使用paddle写一个LeNet网络模型
时间: 2024-05-13 13:14:24 浏览: 101
好的,以下是使用PaddlePaddle实现LeNet-5模型的代码示例:
```python
import paddle
import paddle.nn as nn
class LeNet(nn.Layer):
def __init__(self, num_classes=10):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2D(in_channels=1, out_channels=6, kernel_size=5)
self.pool1 = nn.MaxPool2D(kernel_size=2, stride=2)
self.conv2 = nn.Conv2D(in_channels=6, out_channels=16, kernel_size=5)
self.pool2 = nn.MaxPool2D(kernel_size=2, stride=2)
self.fc1 = nn.Linear(in_features=16*5*5, out_features=120)
self.fc2 = nn.Linear(in_features=120, out_features=84)
self.fc3 = nn.Linear(in_features=84, out_features=num_classes)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = self.pool2(x)
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
x = nn.functional.relu(x)
x = self.fc3(x)
return x
```
LeNet-5模型由两个卷积层和三个全连接层组成。在PaddlePaddle中,我们可以使用`nn.Conv2D`和`nn.Linear`分别定义卷积层和全连接层。在训练过程中,我们可以使用`nn.MaxPool2D`定义最大池化层。在前向传播过程中,我们使用`nn.functional.relu`激活函数来实现非线性映射。最后,我们使用`paddle.flatten`将张量展平,以便传递给全连接层。
阅读全文