使用paddle写一段数据格式为二维矩阵的14类目的分类网络
时间: 2023-06-17 18:08:10 浏览: 120
基于 python使用paddle搭建神经网络,对水果图像进行分类
好的,以下是一个简单的使用 PaddlePaddle 实现数据格式为二维矩阵的14类目的分类网络的示例代码:
```python
import paddle
import paddle.nn.functional as F
# 定义网络结构
class Net(paddle.nn.Layer):
def __init__(self):
super(Net, self).__init__()
self.fc1 = paddle.nn.Linear(28*28, 512)
self.fc2 = paddle.nn.Linear(512, 256)
self.fc3 = paddle.nn.Linear(256, 14)
def forward(self, x):
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义训练和测试函数
def train(model, train_loader, optimizer):
model.train()
for batch_id, data in enumerate(train_loader()):
x_data = data[0]
y_data = paddle.to_tensor(data[1])
y_data = paddle.nn.functional.one_hot(y_data, num_classes=14)
logits = model(x_data)
loss = paddle.nn.functional.binary_cross_entropy_with_logits(logits, y_data)
avg_loss = paddle.mean(loss)
if batch_id % 100 == 0:
print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, avg_loss.numpy()))
avg_loss.backward()
optimizer.step()
optimizer.clear_grad()
def test(model, test_loader):
model.eval()
correct = 0
total = 0
for data in test_loader():
x_data = data[0]
y_data = paddle.to_tensor(data[1])
y_data = paddle.nn.functional.one_hot(y_data, num_classes=14)
logits = model(x_data)
pred = F.sigmoid(logits)
pred = paddle.argmax(pred, axis=1)
total += y_data.shape[0]
correct += (pred == paddle.argmax(y_data, axis=1)).numpy().sum()
acc = correct / total
print("test accuracy: {}".format(acc))
# 加载数据
train_dataset = paddle.vision.datasets.MNIST(mode='train')
test_dataset = paddle.vision.datasets.MNIST(mode='test')
train_loader = paddle.io.DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = paddle.io.DataLoader(test_dataset, batch_size=32, shuffle=False)
# 创建模型和优化器
model = Net()
optimizer = paddle.optimizer.Adam(parameters=model.parameters())
# 训练和测试模型
EPOCH_NUM = 5
for epoch in range(EPOCH_NUM):
train(model, train_loader, optimizer)
test(model, test_loader)
```
这里使用了 MNIST 数据集作为示例数据集,模型结构为三层全连接层(FC),分别为 512、256 和 14 个神经元。在训练和测试过程中,使用了二元交叉熵损失(binary_cross_entropy_with_logits)和准确率作为评估指标。
阅读全文