使用paddle框架写行为克隆算法的训练及测试、部署代码,要求:输入数据格式为20*25的numpy矩阵,输出为14个分类
时间: 2023-06-27 10:00:57 浏览: 171
行为克隆
以下是使用paddle框架写行为克隆算法的训练、测试、部署代码:
```python
import paddle
import paddle.fluid as fluid
import numpy as np
# 定义输入和输出的形状
input_shape = [None, 20, 25]
label_shape = [None, 14]
# 定义输入和输出的变量
input = fluid.layers.data(name='input', shape=input_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=label_shape, dtype='float32')
# 定义网络结构
hidden1 = fluid.layers.fc(input=input, size=128, act='relu')
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
output = fluid.layers.fc(input=hidden2, size=14, act='softmax')
# 定义损失函数
cost = fluid.layers.cross_entropy(input=output, label=label)
avg_cost = fluid.layers.mean(cost)
# 定义优化器
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimizer.minimize(avg_cost)
# 定义训练和测试程序
train_program = fluid.default_main_program()
test_program = fluid.default_main_program().clone(for_test=True)
# 定义执行器
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
# 定义训练数据和标签
train_data = np.random.rand(100, 20, 25).astype('float32')
train_label = np.random.rand(100, 14).astype('float32')
# 定义测试数据和标签
test_data = np.random.rand(10, 20, 25).astype('float32')
test_label = np.random.rand(10, 14).astype('float32')
# 定义每个batch的大小
batch_size = 10
# 训练模型
for epoch in range(10):
for i in range(0, len(train_data), batch_size):
batch_train_data = train_data[i:i+batch_size]
batch_train_label = train_label[i:i+batch_size]
exe.run(train_program, feed={'input': batch_train_data, 'label': batch_train_label})
# 测试模型
test_loss = 0
test_acc = 0
for i in range(0, len(test_data), batch_size):
batch_test_data = test_data[i:i+batch_size]
batch_test_label = test_label[i:i+batch_size]
loss, acc = exe.run(test_program, feed={'input': batch_test_data, 'label': batch_test_label}, fetch_list=[avg_cost, output])
test_loss += loss[0] * len(batch_test_data)
test_acc += np.sum(np.argmax(acc, axis=1) == np.argmax(batch_test_label, axis=1))
test_loss /= len(test_data)
test_acc /= len(test_data)
print('epoch: %d, test_loss: %.4f, test_acc: %.4f' % (epoch, test_loss, test_acc))
# 保存模型
fluid.io.save_inference_model(dirname='./model', feeded_var_names=['input'], target_vars=[output], executor=exe)
# 预测
infer_program, feeded_var_names, target_var = fluid.io.load_inference_model(dirname='./model', executor=exe)
predict_data = np.random.rand(1, 20, 25).astype('float32')
predict_result = exe.run(infer_program, feed={feeded_var_names[0]: predict_data}, fetch_list=target_var)
print(predict_result)
```
以上代码使用了三层全连接神经网络,训练数据和标签是随机生成的。在训练过程中,每个epoch会对训练数据进行一次遍历,每次遍历使用一个batch的数据进行训练。在测试过程中,会对测试数据进行一次遍历,每次遍历使用一个batch的数据进行测试。训练完成后,将模型保存到`./model`目录下,并使用随机生成的一组数据进行预测。
阅读全文