df = df.groupby(df.index // 14).apply(lambda x: x.iloc[:4])解释一下这行代码
时间: 2024-04-28 07:20:31 浏览: 125
这行代码主要是对 pandas DataFrame 进行分组操作,将每14行数据分为一组,然后对每组的数据再取前4行。
具体来说,`df.index // 14` 将 DataFrame 的行索引整除14,得到的结果是一个整数序列,表示每14行数据为一组。`groupby` 方法按照这个整数序列对 DataFrame 进行分组,得到一个 GroupBy 对象。
接下来,`apply` 方法对每个分组进行操作。`lambda x: x.iloc[:4]` 表示对分组中的数据取前4行,即每组数据的前4行。这样就得到了一个新的 DataFrame,其中包含了原始数据中每14行数据的前4行。
最后,`groupby` 方法返回一个分组后的对象,其中每个分组都是一个 DataFrame,包含了原始数据中每14行数据的前4行。
相关问题
解释这段代码importpandasaspdimportnumpyasnpimportstatsmodels.apiassmimportstatsmodels.formula.apiassmfdata_raod=r'C:\Users\chen\Desktop\原油峰强比选峰.xlsx'df=pd.read_excel(data_raod,sheet_name=1,header=0,index_col=0)#将第一列与第一行作为索引与列名dfRdata_df=pd.DataFrame()columnsdata_df=pd.DataFrame()forjinrange(0,19):columns_names=[]foriinrange(0,19):columns_names.append('{}/{}'.format(df.columns[j],df.columns[i]))#构建计算后的列名,储存在columns_names列表中columns_df=pd.DataFrame(columns_names).Tcolumnsdata_df=pd.concat([columnsdata_df,columns_df],axis=0)#print(columns_names)pd_data=df.apply(lambdax:x.iloc[j]/x,axis=1)#pd_data.drop(axis=1,columns=df.columns[:j+1],inplace=True)#pd_data.columns=columns_names#将计算后的数据赋予新的表名final_df=pd_data.groupby(by=pd_data.index).mean()#做平均取值#简单线性回归模型的求解,求解R方R_squared_list=[]foriinrange(len(final_df.columns)):x=final_df.indexy=final_df.iloc[:,i]regression_data=pd.DataFrame({'Y':y,'X':x})regression=smf.ols(formula='Y~X',data=regression_data)#这里面要输入公式和数据model=regression.fit()#模型拟合R_squared_list.append(model.rsquared)#提取R方,储存到列表中R_df=pd.DataFrame(R_squared_list).T#R_df.columns=final_df.columns#列名与R方R_df#输出R方系数值print('成功输出第'+str(j)+'列两两比值后的R方!')Rdata_df=pd.concat([Rdata_df,R_df],axis=0)Rdata_df.to_excel(r'C:\Users\chen\Desktop\R
这段代码中引入了Pandas、NumPy和statsmodels两个模块,用来读取并处理Excel文件中的数据。其中,pd.read_excel()函数用于从指定的Excel文件中读取数据,sheet_name参数表示读取的是第一个表格,header参数表示表格的第一行是标题,index_col参数表示表格的第一列是行索引。
忽略该脚本警告 import pandas as pd import glob def com(): file_paths = glob.glob('E:/py卓望/数据分析/top150_20230321/*.txt') data = pd.DataFrame() for i in file_paths: df = pd.read_csv(i, sep=',', header=None, skiprows=[0]) data = pd.concat([data, df]) data.drop(df.columns[0], axis=1, inplace=True) df.sort_values(by=1, ascending=False, inplace=True) data.iloc[:, 0] = data.iloc[:, 0].str.lower() data.to_csv('E:/py卓望/数据分析/all/all_file.txt', sep=',', index=False,header=False) all = pd.read_csv('E:/py卓望/数据分析/all/all_file.txt', header=None, delimiter=',') all[0] = all[0].str.split('.') all[0] = all[0].apply( lambda x: '.'.join(x[-3:]) if '.'.join(x[-2:]) in ['gov.cn', 'com.cn', 'org.cn', 'net.cn'] else '.'.join(x[-2:])) new_col = all[0] result = pd.concat([new_col,all.iloc[:,1:]],axis=1) result.to_csv('E:/py卓望/数据分析/all/二级域名.txt', sep=',',index=False,header=False) summation = pd.read_csv('E:/py卓望/数据分析/all/二级域名.txt', header=None, delimiter=',') grouped = summation.groupby(0)[1].sum().reset_index() grouped = grouped.sort_values(by=1, ascending=False).reset_index(drop=True) grouped[1] = grouped[1].fillna(summation[1]) grouped.to_csv('E:/py卓望/数据分析/all/处理后求和域名.txt', sep=',', index=False, header=False) top_10000 = pd.read_csv('E:/py卓望/数据分析/all/处理后求和域名.txt', header=None, delimiter=',') alls = top_10000.nlargest(10000, 1) alls.drop(columns=[1], inplace=True) alls.to_csv('E:/py卓望/数据分析/all/data.txt', sep=',',index=False, header=False) final = top_10000.iloc[10000:] final.drop(columns=[1], inplace=True) final.to_csv('E:/py卓望/数据分析/all/final_data.txt', sep=',',index=False, header=False) print(final.to_csv) warnings.filterwarnings("ignore") def main(): com() if __name__ == "__main__": print("开始清洗域名文件") main() print("数据清洗完毕")
要忽略该脚本中的警告,可以在脚本开头添加以下两行代码:
```python
import warnings
warnings.filterwarnings("ignore")
```
这会忽略脚本中的所有警告。将这两行代码添加到脚本的开头即可:
```python
import pandas as pd
import glob
import warnings
def com():
warnings.filterwarnings("ignore")
file_paths = glob.glob('E:/py卓望/数据分析/top150_20230321/*.txt')
data = pd.DataFrame()
for i in file_paths:
df = pd.read_csv(i, sep=',', header=None, skiprows=[0])
data = pd.concat([data, df])
data.drop(df.columns[0], axis=1, inplace=True)
df.sort_values(by=1, ascending=False, inplace=True)
data.iloc[:, 0] = data.iloc[:, 0].str.lower()
data.to_csv('E:/py卓望/数据分析/all/all_file.txt', sep=',', index=False,header=False)
all = pd.read_csv('E:/py卓望/数据分析/all/all_file.txt', header=None, delimiter=',')
all[0] = all[0].str.split('.')
all[0] = all[0].apply(
lambda x: '.'.join(x[-3:]) if '.'.join(x[-2:]) in ['gov.cn', 'com.cn', 'org.cn', 'net.cn'] else '.'.join(x[-2:]))
new_col = all[0]
result = pd.concat([new_col,all.iloc[:,1:]],axis=1)
result.to_csv('E:/py卓望/数据分析/all/二级域名.txt', sep=',',index=False,header=False)
summation = pd.read_csv('E:/py卓望/数据分析/all/二级域名.txt', header=None, delimiter=',')
grouped = summation.groupby(0)[1].sum().reset_index()
grouped = grouped.sort_values(by=1, ascending=False).reset_index(drop=True)
grouped[1] = grouped[1].fillna(summation[1])
grouped.to_csv('E:/py卓望/数据分析/all/处理后求和域名.txt', sep=',', index=False, header=False)
top_10000 = pd.read_csv('E:/py卓望/数据分析/all/处理后求和域名.txt', header=None, delimiter=',')
alls = top_10000.nlargest(10000, 1)
alls.drop(columns=[1], inplace=True)
alls.to_csv('E:/py卓望/数据分析/all/data.txt', sep=',',index=False, header=False)
final = top_10000.iloc[10000:]
final.drop(columns=[1], inplace=True)
final.to_csv('E:/py卓望/数据分析/all/final_data.txt', sep=',',index=False, header=False)
print(final.to_csv)
def main():
print("开始清洗域名文件")
com()
print("数据清洗完毕")
if __name__ == "__main__":
main()
```
这样就可以在运行脚本时忽略所有警告了。
阅读全文