``` self.init_c = nn.Linear(encoder_dim, decoder_dim) ```
时间: 2024-06-14 16:01:27 浏览: 125
这行代码定义了一个`nn.Linear`的对象,`nn.Linear`是PyTorch中的一个线性层,它将输入的数据进行线性变换,即执行以下操作:`y = xA^T + b`,其中`x`是输入数据,`A`是权重矩阵,`b`是偏置向量。在这行代码中,`encoder_dim`和`decoder_dim`分别表示编码器和解码器的维度,因此`self.init_c`是一个线性层,将编码器的输出映射到解码器的维度。
相关问题
def create_decoder_block(in_channels, out_channels, kernel_size, wn=True, bn=True, activation=nn.ReLU, layers=2, final_layer=False): decoder = [] for i in range(layers): _in = in_channels _out = in_channels _bn = bn _activation = activation if i == 0: _in = in_channels * 2 if i == layers - 1: _out = out_channels if final_layer: _bn = False _activation = None decoder.append(create_layer(_in, _out, kernel_size, wn, _bn, _activation, nn.Conv2DTranspose)) return nn.Sequential(*decoder) 在这个decoder里加attention,怎么加?
要在decoder里加上attention,可以按照以下步骤进行:
1. 在decoder的输入和输出之间加入attention模块,这可以通过创建一个新的类来实现。例如,你可以创建一个名为`AttentionBlock`的类,该类接受来自encoder的特征图和decoder的上一层输出作为输入,并输出加权后的特征图。
2. 在`create_decoder_block`函数中,将`AttentionBlock`添加到decoder中。具体来说,你可以在每个decoder块的输入和输出之间添加一个`AttentionBlock`。例如,你可以在以下代码段中插入`AttentionBlock`:
```
if i == 0:
# Add attention module here
decoder.append(AttentionBlock(encoder_channels, in_channels))
_in = in_channels * 2
```
3. 在`AttentionBlock`中实现attention逻辑。在这里,你可以使用`nn.Conv2d`和`nn.Linear`层来计算注意力分数,并使用softmax函数将它们归一化到[0, 1]的范围内。然后,你可以将这些分数乘以encoder的特征图,得到加权后的特征图,并将其与decoder的上一层输出相加。
以下是一个示例`AttentionBlock`的代码:
```
class AttentionBlock(nn.Module):
def __init__(self, encoder_channels, decoder_channels):
super(AttentionBlock, self).__init__()
self.conv = nn.Conv2d(encoder_channels + decoder_channels, decoder_channels, kernel_size=1)
self.linear = nn.Linear(decoder_channels, 1)
def forward(self, encoder_features, decoder_features):
# Compute attention scores
batch_size, _, height, width = decoder_features.size()
encoder_features = F.interpolate(encoder_features, size=(height, width))
attention_scores = self.conv(torch.cat([encoder_features, decoder_features], dim=1))
attention_scores = attention_scores.view(batch_size, -1)
attention_scores = self.linear(attention_scores)
attention_scores = attention_scores.view(batch_size, 1, height, width)
attention_scores = F.softmax(attention_scores, dim=-1)
# Apply attention to encoder features
weighted_encoder_features = encoder_features * attention_scores
weighted_encoder_features = weighted_encoder_features.sum(dim=-1).sum(dim=-1).unsqueeze(2).unsqueeze(3)
# Combine with decoder features
combined_features = torch.cat([weighted_encoder_features, decoder_features], dim=1)
return combined_features
```
在这个示例中,我们首先将encoder的特征图插值为与decoder的特征图相同的大小,然后将它们拼接在一起,并通过一个卷积层计算注意力分数。接着,我们将分数归一化,并将它们乘以encoder的特征图,得到加权的特征图。最后,我们将加权的特征图与decoder的上一层输出拼接在一起,并返回结果。
填写以下代码,并给出详细解释Hypothesis = namedtuple('Hypothesis', ['value', 'score']) class NMT(nn.Module): """ Simple Neural Machine Translation Model: - Bidrectional LSTM Encoder - Unidirection LSTM Decoder - Global Attention Model (Luon
The code you provided defines a named tuple `Hypothesis` with two fields, `value` and `score`. This is a convenient way to store and manipulate hypotheses in the context of sequence-to-sequence models.
The `NMT` class is a PyTorch module that implements a simple neural machine translation model. It consists of a bidirectional LSTM encoder, a unidirectional LSTM decoder, and a global attention mechanism based on Luong et al. (2015).
Here's a breakdown of the code:
```python
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.functional as F
Hypothesis = namedtuple('Hypothesis', ['value', 'score'])
class NMT(nn.Module):
def __init__(self, src_vocab_size, tgt_vocab_size, emb_size, hidden_size):
super(NMT, self).__init__()
self.src_embed = nn.Embedding(src_vocab_size, emb_size)
self.tgt_embed = nn.Embedding(tgt_vocab_size, emb_size)
self.encoder = nn.LSTM(emb_size, hidden_size, bidirectional=True)
self.decoder = nn.LSTMCell(emb_size + hidden_size, hidden_size)
self.attention = nn.Linear(hidden_size * 2, hidden_size)
self.out = nn.Linear(hidden_size, tgt_vocab_size)
self.hidden_size = hidden_size
def forward(self, src, tgt):
batch_size = src.size(0)
src_len = src.size(1)
tgt_len = tgt.size(1)
# Encode the source sentence
src_embedded = self.src_embed(src)
encoder_outputs, (last_hidden, last_cell) = self.encoder(src_embedded)
# Initialize the decoder states
decoder_hidden = last_hidden.view(batch_size, self.hidden_size)
decoder_cell = last_cell.view(batch_size, self.hidden_size)
# Initialize the attention context vector
context = torch.zeros(batch_size, self.hidden_size, device=src.device)
# Initialize the output scores
outputs = torch.zeros(batch_size, tgt_len, self.hidden_size, device=src.device)
# Decode the target sentence
for t in range(tgt_len):
tgt_embedded = self.tgt_embed(tgt[:, t])
decoder_input = torch.cat([tgt_embedded, context], dim=1)
decoder_hidden, decoder_cell = self.decoder(decoder_input, (decoder_hidden, decoder_cell))
attention_scores = self.attention(encoder_outputs)
attention_weights = F.softmax(torch.bmm(attention_scores, decoder_hidden.unsqueeze(2)).squeeze(2), dim=1)
context = torch.bmm(attention_weights.unsqueeze(1), encoder_outputs).squeeze(1)
output = self.out(decoder_hidden)
outputs[:, t] = output
return outputs
```
The `__init__` method initializes the model parameters and layers. It takes four arguments:
- `src_vocab_size`: the size of the source vocabulary
- `tgt_vocab_size`: the size of the target vocabulary
- `emb_size`: the size of the word embeddings
- `hidden_size`: the size of the encoder and decoder hidden states
The model has four main components:
- `src_embed`: an embedding layer for the source sentence
- `tgt_embed`: an embedding layer for the target sentence
- `encoder`: a bidirectional LSTM encoder that encodes the source sentence
- `decoder`: a unidirectional LSTM decoder that generates the target sentence
The attention mechanism is implemented in the `forward` method. It takes two arguments:
- `src`: the source sentence tensor of shape `(batch_size, src_len)`
- `tgt`: the target sentence tensor of shape `(batch_size, tgt_len)`
The method first encodes the source sentence using the bidirectional LSTM encoder. The encoder outputs and final hidden and cell states are stored in `encoder_outputs`, `last_hidden`, and `last_cell`, respectively.
The decoder is initialized with the final hidden and cell states of the encoder. At each time step, the decoder takes as input the embedded target word and the context vector, which is a weighted sum of the encoder outputs based on the attention scores. The decoder output and hidden and cell states are updated using the LSTMCell module.
The attention scores are calculated by applying a linear transform to the concatenated decoder hidden state and encoder outputs, followed by a softmax activation. The attention weights are used to compute the context vector as a weighted sum of the encoder outputs.
Finally, the decoder hidden state is passed through a linear layer to produce the output scores for each target word in the sequence. The output scores are stored in the `outputs` tensor and returned by the method.
阅读全文