基于stm32电压检测

时间: 2023-07-06 07:04:21 浏览: 66
您可以使用STM32内置的ADC模块来进行电压检测。首先,您需要将需要测量的电压连接到STM32的某个ADC引脚上。然后,您需要配置ADC模块的通道和采样率。最后,您可以使用ADC模块读取ADC引脚上的电压值,并将其转换为实际的电压值。 以下是一个基本的示例代码来进行电压检测: ```c #include "stm32f4xx.h" int main(void) { // 配置ADC模块 RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); ADC_InitTypeDef ADC_InitStructure; ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfConversion = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_15Cycles); // 启动ADC转换 ADC_Cmd(ADC1, ENABLE); // 等待ADC转换完成 while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); // 获取ADC值并转换为电压值 uint16_t adc_value = ADC_GetConversionValue(ADC1); float voltage = (float)adc_value * 3.3 / 4096; // 处理电压值 // ... while (1) { // 主循环 } } ``` 在上面的代码中,我们使用ADC1的通道0来读取电压值。我们将其采样时间设置为15个时钟周期,并将ADC分辨率设置为12位。我们还将ADC模块配置为单次转换模式,以便只进行一次转换。在主循环中,我们可以处理读取到的电压值。

相关推荐

最新推荐

recommend-type

揭秘STM32多路电压测量电路

STM32在速度、功耗方面性能都更加优越,并且STM32价格较低,在成本上也有优势。适合于控制电子设备的设计。使用12位ADC,能够满足一定的测量精度,对于较高的测量要求,则需要使用更高精确度的ADC。但是使用高精度 ...
recommend-type

基于STM32单片机的太阳能充电器.pdf

出,通过设置最大充电电流防止电流过大,利用电压检测电路对充电电压进行实时检测,能够对不同充电电压需求的设备和电池进行充 电。系统主要由太阳能板、STM32F103C8T6控制电路、单片机电压电路采集和监控电路、TL...
recommend-type

STM32 实习报告

1、完成声音传感器控制蜂鸣器,当有声音蜂鸣器响。...(pwm-10ms方波、ADC检测模块输出变化的电压) 4、把温湿度数据、蜂鸣器状态、风扇状态、声音传感器状态和PM2.5传感器烟尘数据实时更新显示在屏幕上。
recommend-type

电子测量中的基于STM32的智能参数测试仪的设计方案

为了能够精确采集电磁继电器的吸合电压等主要参数,采用ARM技术和上、下位机方法,设计了一款基于ARM Cortex-M3芯片STM32F103ZET6单片机控制的电磁继电器综合参数检测仪的方案。该仪器可完成对动断、动合、转换型...
recommend-type

基于STM32的三相交流充电桩控制系统设计.pdf

摘要:基于 STM32F105VCT6 芯片,设计了一款支持触摸/刷卡操作、电能计量和 4G 通信等功能的三相交流 充电桩控制系统。首先提出了三相交流充电桩控制系统的主体结构,对其进行了功能模块划分,然后设计了 控制系统...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。