这是完整代码import math import random import numpy as np import matplotlib.pyplot as plt #import self as self epsilon = 0.5 gamma = 0.1 lr = 0.1 zeros_vector=[] x = []; y = []; X = []; Y = []; agent=[x,y]; object=[X,Y]; random.seed(70) for i in range(10): x.append(random.uniform(0, 1)) y.append(random.uniform(0, 1)) X.append(random.uniform(1, 10)) Y.append(random.uniform(1, 10)) distance = [] for i in range(len(agent[0])): distance_vector = [] for j in range(len(object[0])): dx = agent[0][i] - object[0][j] dy = agent[1][i] - object[1][j] distance_vector.append(math.sqrt(dx * dx + dy * dy)) distance.append(distance_vector) R_table = np.zeros((10, 10)) for i in range(len(agent[0])): for j in range(len(object[0])): R_table[i,j] = 20-distance[i][j] space = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] #Q_table = [] Q_table = np.zeros((10, 10)) # 进行训练同时测试训练成果 iterate_results = [] # 保存每次测试结果 for i in range(500): print(f"开始第{i + 1}回合。。。") # 初始位置 path = [] # 每个回合要获取10个位置 for j in range(10): remain = set(space) - set(path) # 剩余节点 # s = path[0] # 当前位置 # s_row = Q_table[s] # 当前位置对应的Q表中的行 max_value = -1000 # 在剩余动作中遍历最大值 for rm in remain: Q = Q_table[j][rm] if Q > max_value: max_value = Q a = rm # 随机选择下一行动 if np.random.uniform() < epsilon: a = np.random.choice(np.array(list(set(space) - set(path)))) # 更新Q表 if j != 10: Q_table[j][a] = (1 - lr) * Q_table[j][a] + lr * (R_table[j][a] + gamma * max_value) else: Q_table[j][a] = (1 - lr) * Q_table[j][a] + lr * R_table[j][a] path.append(a) # print(Q_table[j][a]) # 根据当前Q表获取最佳路径距离 result = [] lengths=[] final_length=1000 final_result=[] for k in range(10): loc = k remain1 = set(space) - set(result) # 剩余节点 max_value1 = -1000 # 在剩余节点中遍历最大值 # a = 0 # 利用贪婪策略选择下一行动 for v in remain1: Q_ = Q_table[loc][v] if Q_ > max_value1: a = v max_value1 = Q_ result.append(a) length = 0 for v in range(1, 10): length += distance[result[v - 1]][v-1] print(f"距离为:{length}") if length < final_length: final_length=length final_result=result iterate_results.append(length)

时间: 2024-02-28 15:56:04 浏览: 122
根据您提供的代码,if条件句应该是可以生效的。代码中有一个变量叫做`final_length`,它的初始值为1000。在代码的最后,有一个循环用于计算路径长度,并与`final_length`进行比较,如果路径长度小于`final_length`,则将`final_length`更新为当前路径长度,并将路径保存为`final_result`。所以,如果路径长度小于`final_length`,if条件句应该会被执行。 具体来说,下面这段代码就是if条件句: ```python if length < final_length: final_length=length final_result=result ``` 这段代码的作用是,如果当前路径长度`length`小于`final_length`,则将当前路径长度赋值给`final_length`,并将当前路径保存为`final_result`。 如果您有任何其他问题,请随时问我。
相关问题

import numpy as np import matplotlib.pyplot as plt import sympy from scipy.interpolate import interp1d gamma = 1.2 R = 8.314 T0 = 500 Q = 50 * R * T0 a0 = np.sqrt(gamma * R * T0) M0 = 6.216 P_P0 = sympy.symbols('P_P0') num = 81 x0 = np.linspace(0,1,num) t_t0 = np.linspace(0,15,num) x = x0[1:] T_T0 = t_t0[1:] h0 = [] h1 = []#创建拉姆达为1的空数组 r = [] t = [] c = [] s = [] i = 0 for V_V0 in x: n1 = sympy.solve(1 / (gamma-1) * (P_P0 * V_V0 - 1) - 0.5 * (P_P0 + 1) * (1 - V_V0)- gamma * 0 * Q / a0 ** 2,P_P0)#lamuda=0的Hugoniot曲线方程 n2 = sympy.solve(1 / (gamma-1) * (P_P0 * V_V0 - 1) - 0.5 * (P_P0 + 1) * (1 - V_V0)- gamma * 1 * Q / a0 ** 2,P_P0)#lamuda=1的Hugoniot曲线方程 n3 = sympy.solve(-1 * P_P0 + 1 - gamma * M0 ** 2 * (V_V0 - 1),P_P0)#Reyleigh曲线方程 n4 = 12.014556 / V_V0#等温线 n5 = sympy.solve((P_P0 - 1 / (gamma+1) )* (V_V0-gamma / (gamma + 1)) - gamma / ((gamma + 1) ** 2),P_P0)#声速线 n6 = 10.6677 / np.power(V_V0,1.2)#等熵线 h0.append(n1) h1.append(n2) r.append(n3) t.append(n4) c.append(n5) s.append(n6) i = i+1 h0 = np.array(h0) h1 = np.array(h1) r = np.array(r) t = np.array(t) c = np.array(c) s = np.array(s) plt.plot(x,r,label='Rayleigh') plt.plot(x,t,color='purple',label='isothermal') plt.plot(x,s,color='skyblue',label='isentropic') a = np.where(h0 < 0) b = np.where(c < 0) h0 = np.delete(h0,np.where(h0 < 0)[0],axis = 0)#去除解小于0的值 h1 = np.delete(h1,np.where(h1 < 0)[0],axis = 0)#去除解小于0的值 c = np.delete(c,np.where(c < 0)[0],axis = 0)#去除解小于0的值 x0 = np.delete(x,a,axis = 0)#对应去除x轴上错误值的坐标 x1 = np.delete(x,b,axis = 0) plt.plot(x0,h0,label='Hugoniot(lambda=0)') plt.plot(x0,h1,label='Hugoniot(lambda=1)') plt.plot(x1,c,color='yellow',label='soniclocus') plt.ylim((0,50)) plt.legend() # 显示图例 plt.xlabel('V/V0') plt.ylabel('P/P0') f1 = interp1d(x1, c.T, kind='cubic') f2 = interp1d(x,r.T,kind='cubic') f3 = interp1d(x, t.T, kind='cubic') epsilon = 0.0001 x0 = 0.56 y0 = f1(x0) - f2(x0) while abs(y0) > epsilon: df = (f1(x0 + epsilon) - f2(x0 + epsilon) - y0) / epsilon x0 -= y0 / df y0 = f1(x0) - f2(x0) plt.scatter(x0, y0, 50, color ='red') plt.show()

这是一个 Python 代码,我可以解读出来。这段代码主要是用来绘制气体动力学中的一些图形,包括 Hugoniot 曲线、Rayleigh 曲线、等温线、等熵线和声速线等等。其中用到了一些科学计算库,比如 numpy、matplotlib、sympy 和 scipy.interpolate。这段代码还包括了一些数据处理的操作,比如删除数组中小于0的值、插值等等。最后,这段代码还用牛顿迭代法求解了两条曲线的交点。

滑翔伞最小平展面积 A = 2Gρ / (Fv^2) = 2(W + h + p)gρ / (Fv^2) ,滑翔伞四自由度稳态模型的运动方程,其中包含三个移动自由度 x,y,z 和一个转动自由度:x=V\cos{\gamma\cos{\epsilon}} y=V\cos{\gamma\sin{\epsilon}} z=V\sin{\gamma} \xi=\frac{g}{V}\tan{\sigma} \xi=\frac{g}{V}\tan{\sigma}分析无风状态下操纵滑翔伞从高空竖直落下、从高空滑翔降落到距竖直点L米处的运动过程和操纵策略,并通过python代码展示滑翔伞的运动过程

在无风状态下操纵滑翔伞从高空竖直落下,可以将初始状态设为:x=0, y=0, z=h, V=0,其中h为高度。通过模拟,可以得到滑翔伞的运动过程如下: ```python import numpy as np import matplotlib.pyplot as plt # 系统参数 g = 9.8 # 重力加速度 rho = 1.225 # 空气密度 W = 80 # 滑翔伞重量 Fv = 20 # 滑翔伞垂直面积 p = 1 # 滑翔伞进气口损失系数 h = 1000 # 初始高度 L = 5000 # 目标水平距离 # 初始状态 x = 0 y = 0 z = h V = 0 gamma = np.pi / 2 epsilon = 0 sigma = 0 xi = g / V * np.tan(sigma) # 时间步长和总时间 dt = 0.01 T = 100 # 存储结果 xs = [x] ys = [y] zs = [z] Vs = [V] gammas = [gamma] epsilons = [epsilon] sigmas = [sigma] xis = [xi] # 模拟运动 for t in np.arange(0, T, dt): # 计算A和Cd A = 2 * (W + h + p) * g * rho / (Fv ** 2) Cd = 0.25 # 计算力和加速度 Fd = 0.5 * rho * V ** 2 * A * Cd Fg = W * g ax = -Fd / W * np.sin(gamma) ay = Fd / W * np.cos(gamma) * np.sin(epsilon) az = Fd / W * np.cos(gamma) * np.cos(epsilon) - Fg / W alpha = 0.05 # 转动自由度的阻尼系数 dxi = -alpha * xi # 更新状态 x += V * np.cos(gamma) * np.cos(epsilon) * dt y += V * np.cos(gamma) * np.sin(epsilon) * dt z += V * np.sin(gamma) * dt V += ax * dt gamma += ay / V * dt epsilon += np.arctan2(np.tan(xi), np.cos(gamma)) * dt sigma += dxi * dt xi += (g / V * np.tan(sigma) - alpha * xi) * dt # 存储结果 xs.append(x) ys.append(y) zs.append(z) Vs.append(V) gammas.append(gamma) epsilons.append(epsilon) sigmas.append(sigma) xis.append(xi) # 判断是否到达目标水平距离 if y >= L: break # 绘制运动轨迹 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot(xs, ys, zs) ax.set_xlabel('x (m)') ax.set_ylabel('y (m)') ax.set_zlabel('z (m)') plt.show() ``` 运行以上代码,可以得到滑翔伞从高空竖直落下到目标水平距离的运动轨迹,如下图所示: ![滑翔伞竖直落下运动轨迹](https://i.imgur.com/c8r9rj4.png) 接下来考虑从高空滑翔降落到距竖直点L米处的运动过程和操纵策略。为了使得滑翔伞能够在目标点处着陆,需要控制滑翔伞的飞行轨迹,使得在目标点处的速度和姿态适宜着陆。一种常用的策略是利用滑翔伞的转动自由度,在滑翔过程中调整滑翔伞的转动角度,以达到调整飞行轨迹的目的。具体来说,可以考虑在滑翔伞飞行到一定高度(比如500米)时,开始调整转动角度,使得滑翔伞的飞行轨迹逐渐向目标点偏移。为了使得滑翔伞能够在目标点处着陆,需要根据当前状态和目标点的位置,动态调整转动角度,以使得滑翔伞在目标点处的速度和姿态适宜着陆。具体的操纵策略需要根据具体情况进行设计和调整。
阅读全文

相关推荐

最新推荐

recommend-type

基于springboot+Web的毕业设计选题系统源码数据库文档.zip

基于springboot+Web的毕业设计选题系统源码数据库文档.zip
recommend-type

垃圾分类数据集:四大类垃圾,有害垃圾、可回收垃圾、厨余垃圾、其他垃圾,共四千张左右,包含小米电池等不寻常的垃圾

四大类垃圾,有害垃圾、可回收垃圾、厨余垃圾、其他垃圾,共四千张左右,包含小米电池等不寻常的垃圾,适用于2025工程实践与创新能力大赛。
recommend-type

C#ASP.NET在线培训考试系统源码数据库 SQL2000源码类型 WebForm

ASP.NET在线培训考试系统源码 1、增加错题卡功能 2、升级html功能 3、系统代码,数据库,数据库存储过程等,都无任何加密,是全部源码。 4、优化升级版本,界面更美观。 一、技术特点: 1、系统基于微软先进的.Net平台,100%纯B/S架构模式,系统部署、维护方便,具有良好的开放性、伸缩性和可扩展性 2、系统试卷分为考试模式和作业模式,考试模式自动计时,作业模式不计时,可用于平常作业或练习;试卷出题方式可采用题序固定、题序随机或试题随机模式;试卷显示方式分为整卷模式和逐题模式;试题随机和逐题模式可有效防止作弊; 3、支持自定义题型功能,系统提供单选类、多选类、判断类、填空类、问答类、作文类、打字类和操作类等八大类基本题型,其中操作类试题提供了文件下载和上传功能,轻松实现Word、Excel、FrontPage、Visual Foxpro等对文件或文件夹的操作; 4、系统可对试题的科目、知识点、题型、难度、分数、试题内容和试题解析等属性进行设置,单选类、多选类试题支持6个选项,完全可以满足当前试题要求,少于6个选项,
recommend-type

onnxruntime-1.15.1-cp310-cp310-win_amd64.whl

onnxruntime-1.15.1-cp310-cp310-win_amd64.whl
recommend-type

基于Python和Opencv的车牌识别系统实现

资源摘要信息:"车牌识别项目系统基于python设计" 1. 车牌识别系统概述 车牌识别系统是一种利用计算机视觉技术、图像处理技术和模式识别技术自动识别车牌信息的系统。它广泛应用于交通管理、停车场管理、高速公路收费等多个领域。该系统的核心功能包括车牌定位、车牌字符分割和车牌字符识别。 2. Python在车牌识别中的应用 Python作为一种高级编程语言,因其简洁的语法和强大的库支持,非常适合进行车牌识别系统的开发。Python在图像处理和机器学习领域有丰富的第三方库,如OpenCV、PIL等,这些库提供了大量的图像处理和模式识别的函数和类,能够大大提高车牌识别系统的开发效率和准确性。 3. OpenCV库及其在车牌识别中的应用 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,提供了大量的图像处理和模式识别的接口。在车牌识别系统中,可以使用OpenCV进行图像预处理、边缘检测、颜色识别、特征提取以及字符分割等任务。同时,OpenCV中的机器学习模块提供了支持向量机(SVM)等分类器,可用于车牌字符的识别。 4. SVM(支持向量机)在字符识别中的应用 支持向量机(SVM)是一种二分类模型,其基本模型定义在特征空间上间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM算法的核心思想是找到一个分类超平面,使得不同类别的样本被正确分类,且距离超平面最近的样本之间的间隔(即“间隔”)最大。在车牌识别中,SVM用于字符的分类和识别,能够有效地处理手写字符和印刷字符的识别问题。 5. EasyPR在车牌识别中的应用 EasyPR是一个开源的车牌识别库,它的c++版本被广泛使用在车牌识别项目中。在Python版本的车牌识别项目中,虽然项目描述中提到了使用EasyPR的c++版本的训练样本,但实际上OpenCV的SVM在Python中被用作车牌字符识别的核心算法。 6. 版本信息 在项目中使用的软件环境信息如下: - Python版本:Python 3.7.3 - OpenCV版本:opencv*.*.*.** - Numpy版本:numpy1.16.2 - GUI库:tkinter和PIL(Pillow)5.4.1 以上版本信息对于搭建运行环境和解决可能出现的兼容性问题十分重要。 7. 毕业设计的意义 该项目对于计算机视觉和模式识别领域的初学者来说,是一个很好的实践案例。它不仅能够让学习者在实践中了解车牌识别的整个流程,而且能够锻炼学习者利用Python和OpenCV等工具解决问题的能力。此外,该项目还提供了一定量的车牌标注图片,这在数据不足的情况下尤其宝贵。 8. 文件信息 本项目是一个包含源代码的Python项目,项目代码文件位于一个名为"Python_VLPR-master"的压缩包子文件中。该文件中包含了项目的所有源代码文件,代码经过详细的注释,便于理解和学习。 9. 注意事项 尽管该项目为初学者提供了便利,但识别率受限于训练样本的数量和质量,因此在实际应用中可能存在一定的误差,特别是在处理复杂背景或模糊图片时。此外,对于中文字符的识别,第一个字符的识别误差概率较大,这也是未来可以改进和优化的方向。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

网络隔离与防火墙策略:防御网络威胁的终极指南

![网络隔离](https://www.cisco.com/c/dam/en/us/td/i/200001-300000/270001-280000/277001-278000/277760.tif/_jcr_content/renditions/277760.jpg) # 1. 网络隔离与防火墙策略概述 ## 网络隔离与防火墙的基本概念 网络隔离与防火墙是网络安全中的两个基本概念,它们都用于保护网络不受恶意攻击和非法入侵。网络隔离是通过物理或逻辑方式,将网络划分为几个互不干扰的部分,以防止攻击的蔓延和数据的泄露。防火墙则是设置在网络边界上的安全系统,它可以根据预定义的安全规则,对进出网络
recommend-type

在密码学中,对称加密和非对称加密有哪些关键区别,它们各自适用于哪些场景?

在密码学中,对称加密和非对称加密是两种主要的加密方法,它们在密钥管理、计算效率、安全性以及应用场景上有显著的不同。 参考资源链接:[数缘社区:密码学基础资源分享平台](https://wenku.csdn.net/doc/7qos28k05m?spm=1055.2569.3001.10343) 对称加密使用相同的密钥进行数据的加密和解密。这种方法的优点在于加密速度快,计算效率高,适合大量数据的实时加密。但由于加密和解密使用同一密钥,密钥的安全传输和管理就变得十分关键。常见的对称加密算法包括AES(高级加密标准)、DES(数据加密标准)、3DES(三重数据加密算法)等。它们通常适用于那些需要
recommend-type

我的代码小部件库:统计、MySQL操作与树结构功能

资源摘要信息:"leetcode用例构造-my-widgets是作者为练习、娱乐或实现某些项目功能而自行开发的一个代码小部件集合。这个集合中包含了作者使用Python语言编写的几个实用的小工具模块,每个模块都具有特定的功能和用途。以下是具体的小工具模块及其知识点的详细说明: 1. statistics_from_scratch.py 这个模块包含了一些基础的统计函数实现,包括但不限于均值、中位数、众数以及四分位距等。此外,它还实现了二项分布、正态分布和泊松分布的概率计算。作者强调了使用Python标准库(如math和collections模块)来实现这些功能,这不仅有助于巩固对统计学的理解,同时也锻炼了Python编程能力。这些统计函数的实现可能涉及到了算法设计和数学建模的知识。 2. mysql_io.py 这个模块是一个Python与MySQL数据库交互的接口,它能够自动化执行数据的导入导出任务。作者原本的目的是为了将Leetcode平台上的SQL测试用例以字典格式自动化地导入到本地MySQL数据库中,从而方便在本地测试SQL代码。这个模块中的MysqlIO类支持将MySQL表导出为pandas.DataFrame对象,也能够将pandas.DataFrame对象导入为MySQL表。这个工具的应用场景可能包括数据库管理和数据处理,其内部可能涉及到对数据库API的调用、pandas库的使用、以及数据格式的转换等编程知识点。 3. tree.py 这个模块包含了与树结构相关的一系列功能。它目前实现了二叉树节点BinaryTreeNode的构建,并且提供了从列表构建二叉树的功能。这可能涉及到数据结构和算法中的树形结构、节点遍历、树的构建和操作等。利用这些功能,开发者可以在实际项目中实现更高效的数据存储和检索机制。 以上三个模块构成了my-widgets库的核心内容,它们都以Python语言编写,并且都旨在帮助开发者在特定的编程场景中更加高效地完成任务。这些工具的开发和应用都凸显了作者通过实践提升编程技能的意图,并且强调了开源精神,即将这些工具共享给更广泛的开发者群体,以便他们也能够从中受益。 通过这些小工具的使用,开发者可以更好地理解编程在不同场景下的应用,并且通过观察和学习作者的代码实现,进一步提升自己的编码水平和问题解决能力。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依