股票强化学习代码
时间: 2023-06-29 10:14:18 浏览: 157
ReinforcementLearning:增强学习的学习代码
股票强化学习是一种应用强化学习的方法,用于预测股票价格和进行交易决策。以下是一个简单的股票强化学习代码示例:
1. 导入必要的库和模块
```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, LSTM
from tensorflow.keras.optimizers import Adam
```
2. 准备数据
```
# 从csv文件中读取股票数据
data = pd.read_csv('stock_data.csv')
# 将数据分成训练集和测试集
train_size = int(len(data) * 0.8)
train_data = data.iloc[:train_size, :]
test_data = data.iloc[train_size:, :]
# 对数据进行归一化处理
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
train_data = scaler.fit_transform(train_data)
test_data = scaler.transform(test_data)
```
3. 定义环境和代理
```
class StockEnvironment:
def __init__(self, data, window_size=30):
self.data = data
self.window_size = window_size
self.action_space = 2 # 买入或卖出
self.observation_space = (window_size, 1) # 输入是window_size个价格
def reset(self):
self.current_step = self.window_size
return self.data[self.current_step - self.window_size:self.current_step, :]
def step(self, action):
reward = 0
done = False
if action == 0: # 买入
reward = -self.data[self.current_step, 0]
self.current_step += 1
elif action == 1: # 卖出
reward = self.data[self.current_step, 0]
self.current_step += 1
if self.current_step >= len(self.data):
done = True
return self.data[self.current_step - self.window_size:self.current_step, :], reward, done
class StockAgent:
def __init__(self, env):
self.env = env
self.gamma = 0.95 # 折扣因子
self.epsilon = 1.0 # 探索率
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.model = self.build_model()
def build_model(self):
model = Sequential()
model.add(LSTM(64, input_shape=self.env.observation_space, return_sequences=True))
model.add(Dropout(0.5))
model.add(LSTM(32, return_sequences=False))
model.add(Dropout(0.5))
model.add(Dense(self.env.action_space, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=0.001))
return model
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.choice(self.env.action_space)
else:
return np.argmax(self.model.predict(state)[0])
def learn(self, state, action, reward, next_state, done):
target = reward
if not done:
target = reward + self.gamma * np.amax(self.model.predict(next_state)[0])
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
```
4. 训练代理
```
env = StockEnvironment(train_data)
agent = StockAgent(env)
batch_size = 32
num_episodes = 1000
for episode in range(num_episodes):
state = env.reset()
state = np.reshape(state, [1, env.observation_space[0], env.observation_space[1]])
done = False
total_reward = 0
while not done:
action = agent.act(state)
next_state, reward, done = env.step(action)
next_state = np.reshape(next_state, [1, env.observation_space[0], env.observation_space[1]])
agent.learn(state, action, reward, next_state, done)
state = next_state
total_reward += reward
print("Episode: %d, Reward: %f, Epsilon: %f" % (episode, total_reward, agent.epsilon))
```
5. 测试代理
```
test_env = StockEnvironment(test_data)
state = test_env.reset()
state = np.reshape(state, [1, test_env.observation_space[0], test_env.observation_space[1]])
done = False
total_reward = 0
while not done:
action = agent.act(state)
next_state, reward, done = test_env.step(action)
next_state = np.reshape(next_state, [1, test_env.observation_space[0], test_env.observation_space[1]])
state = next_state
total_reward += reward
print("Test Reward: %f" % total_reward)
```
阅读全文