用akshare,gym写出多股票强化学习代码
时间: 2023-07-19 17:18:34 浏览: 204
基于 Python+gym 框架下的多智能体追逃博弈强化学习平台(下载即用)
好的,下面是使用 akshare 和 gym 库实现多股票强化学习的代码,主要包括以下步骤:
1. 导入需要的库和模块。
2. 使用 akshare 获取多只股票的历史数据。
3. 对数据进行预处理,包括缺失值填充、数据标准化等。
4. 使用 gym 创建股票交易环境,定义交易动作和奖励机制。
5. 创建强化学习模型,使用历史数据进行训练和优化。
6. 在交易环境中进行模型测试和优化。
```python
import akshare as ak
import gym
import numpy as np
import pandas as pd
from gym import spaces
# 获取多只股票的历史数据
stocks = ['sh000001', 'sz000002', 'sz000003']
start_date = '20100101'
end_date = '20220101'
stock_data = []
for s in stocks:
stock_data.append(ak.stock_zh_a_hist(symbol=s, start_date=start_date, end_date=end_date, adjust='hfq'))
# 合并多只股票数据
data = pd.concat(stock_data, axis=0, ignore_index=True)
data = data.sort_values(['symbol', 'date'], ascending=[True, True])
data = data.reset_index(drop=True)
# 对数据进行预处理
data['open'] = data.groupby('symbol')['open'].apply(lambda x: x.fillna(method='ffill'))
data['high'] = data.groupby('symbol')['high'].apply(lambda x: x.fillna(method='ffill'))
data['low'] = data.groupby('symbol')['low'].apply(lambda x: x.fillna(method='ffill'))
data['close'] = data.groupby('symbol')['close'].apply(lambda x: x.fillna(method='ffill'))
data['volume'] = data.groupby('symbol')['volume'].apply(lambda x: x.fillna(method='ffill'))
data['open'] = data.groupby('symbol')['open'].apply(lambda x: (x - np.mean(x)) / np.std(x))
data['high'] = data.groupby('symbol')['high'].apply(lambda x: (x - np.mean(x)) / np.std(x))
data['low'] = data.groupby('symbol')['low'].apply(lambda x: (x - np.mean(x)) / np.std(x))
data['close'] = data.groupby('symbol')['close'].apply(lambda x: (x - np.mean(x)) / np.std(x))
data['volume'] = data.groupby('symbol')['volume'].apply(lambda x: (x - np.mean(x)) / np.std(x))
# 创建股票交易环境
class StockTradingEnv(gym.Env):
metadata = {'render.modes': ['human']}
def __init__(self, df):
self.df = df
self.reward_range = (0, np.inf)
self.action_space = spaces.Box(low=-1, high=1, shape=(len(stocks),))
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(len(stocks), 5))
def _next_observation(self):
obs = []
for s in stocks:
obs.append(self.df.loc[self.current_step][[s + '_open', s + '_high', s + '_low', s + '_close', s + '_volume']])
return obs
def _take_action(self, action):
for i in range(len(stocks)):
self.df.loc[self.current_step, stocks[i] + '_close'] *= (1 + action[i])
self.current_step += 1
def reset(self):
self.current_step = 0
return self._next_observation()
def step(self, action):
self._take_action(action)
obs = self._next_observation()
reward = self._get_reward()
done = self.current_step == len(self.df) - 1
return obs, reward, done, {}
def _get_reward(self):
reward = 0
for s in stocks:
if self.df.loc[self.current_step][s + '_close'] > self.df.loc[self.current_step - 1][s + '_close']:
reward += 1
else:
reward -= 1
return reward
# 创建强化学习模型
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
env = DummyVecEnv([lambda: StockTradingEnv(data)])
model = PPO('MlpPolicy', env, verbose=1)
model.learn(total_timesteps=10000)
# 在交易环境中进行模型测试和优化
obs = env.reset()
for i in range(len(data) - 1):
action, _states = model.predict(obs)
obs, rewards, done, info = env.step(action)
if done:
obs = env.reset()
```
阅读全文