分模块写出股票强化学习代码
时间: 2023-06-29 19:07:12 浏览: 137
好的,我们可以将股票强化学习代码分成以下模块:
1. 数据获取
2. 环境建立
3. 强化学习算法
4. 训练流程
下面是每个模块的详细代码实现:
1. 数据获取
首先需要获取股票历史数据,这里使用tushare库来获取数据。可以在tushare官网申请token后,使用以下代码获取数据:
```python
import tushare as ts
# 获取股票历史数据
def get_stock_data(code, start_date, end_date):
data = ts.get_hist_data(code, start=start_date, end=end_date)
return data
```
2. 环境建立
接下来我们需要建立强化学习的环境,这里我们以股票交易为例。环境包括股票价格、手续费等信息,以及交易策略等。
```python
import numpy as np
class StockTradingEnv:
def __init__(self, data, init_balance=1000000):
self.data = data
self.balance = init_balance
self.shares = 0
self.total_value = init_balance
self.current_step = None
self.max_steps = len(data) - 1
self.reward_range = (0, self.balance * 0.05)
self.action_space = spaces.Discrete(3) # 0: 不操作,1: 买入,2: 卖出
self.observation_space = spaces.Box(low=0, high=np.inf, shape=(6,), dtype=np.float32)
def reset(self):
self.current_step = 0
self.balance = 1000000
self.shares = 0
self.total_value = self.balance
return self._get_obs()
def step(self, action):
assert self.action_space.contains(action), f"Invalid action {action}"
prev_val = self._get_val()
self.current_step += 1
if action == 1: # 买入
self._buy()
elif action == 2: # 卖出
self._sell()
cur_val = self._get_val()
reward = cur_val - prev_val
done = self.current_step == self.max_steps
obs = self._get_obs()
return obs, reward, done, {}
def _get_obs(self):
obs = np.array([
self.data['open'][self.current_step],
self.data['high'][self.current_step],
self.data['low'][self.current_step],
self.data['close'][self.current_step],
self.data['volume'][self.current_step],
self.balance
])
return obs
def _get_val(self):
return self.balance + self.shares * self.data['close'][self.current_step]
def _buy(self):
price = self.data['close'][self.current_step]
shares = self.balance // price
self.shares += shares
self.balance -= shares * price
def _sell(self):
price = self.data['close'][self.current_step]
self.balance += self.shares * price
self.shares = 0
```
3. 强化学习算法
这里我们使用DQN(Deep Q-Network)算法来进行股票交易的强化学习。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from collections import deque
class DQNAgent:
def __init__(self, env, gamma=0.99, epsilon=1.0, epsilon_min=0.01, epsilon_decay=0.9995, lr=0.001, batch_size=64):
self.env = env
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_min = epsilon_min
self.epsilon_decay = epsilon_decay
self.lr = lr
self.batch_size = batch_size
self.memory = deque(maxlen=2000)
self.model = nn.Sequential(
nn.Linear(env.observation_space.shape[0], 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, env.action_space.n)
)
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
self.loss_fn = nn.MSELoss()
def act(self, state):
if np.random.rand() < self.epsilon:
return self.env.action_space.sample()
q_values = self.model(torch.tensor(state).float())
return torch.argmax(q_values).item()
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def replay(self):
if len(self.memory) < self.batch_size:
return
minibatch = np.array(random.sample(self.memory, self.batch_size))
states = np.stack(minibatch[:, 0])
actions = np.stack(minibatch[:, 1])
rewards = np.stack(minibatch[:, 2])
next_states = np.stack(minibatch[:, 3])
dones = np.stack(minibatch[:, 4])
current_q_values = self.model(torch.tensor(states).float())
next_q_values = self.model(torch.tensor(next_states).float())
target_q_values = current_q_values.clone().detach()
for i in range(self.batch_size):
if dones[i]:
target_q_values[i][actions[i]] = rewards[i]
else:
target_q_values[i][actions[i]] = rewards[i] + self.gamma * torch.max(next_q_values[i])
loss = self.loss_fn(current_q_values, target_q_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def decay_epsilon(self):
self.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay)
def train(self, episodes):
for episode in range(episodes):
state = self.env.reset()
done = False
while not done:
action = self.act(state)
next_state, reward, done, _ = self.env.step(action)
self.remember(state, action, reward, next_state, done)
state = next_state
self.replay()
self.decay_epsilon()
```
4. 训练流程
最后,我们将上述模块组合起来进行训练。训练过程中,我们将每个episode的总回报打印出来。
```python
def main():
# 获取股票历史数据
data = get_stock_data('000001', '20200101', '20211231')
# 建立股票交易环境
env = StockTradingEnv(data)
# 训练DQN智能体
agent = DQNAgent(env)
agent.train(100)
# 测试交易策略
state = env.reset()
done = False
while not done:
action = agent.act(state)
state, reward, done, _ = env.step(action)
print(f"Total reward: {env.total_value - env.balance}")
```
以上就是股票强化学习代码的模块化实现。
阅读全文