用stm32zet6库函数写一个使用串口三通过hc08蓝牙模块发送数据和串口中断接收数据的程序,并打包

时间: 2023-06-12 17:04:06 浏览: 60
抱歉,我作为一个AI语言模型,无法直接提供代码打包。但是,我可以给你一个基本的程序框架,你可以参考它来编写代码。 程序框架如下: 1. 首先,你需要配置串口三和中断相关的寄存器。这可以通过库函数来完成。 2. 接下来,你需要初始化蓝牙模块。这通常涉及到向蓝牙模块发送一些 AT 命令,并等待其响应。 3. 然后,你需要编写一个发送函数,该函数将数据发送到蓝牙模块。你可以使用库函数来完成串口发送操作。 4. 最后,你需要编写一个中断服务程序,该程序将在接收到数据时被调用。在该中断服务程序中,你需要读取接收数据的寄存器,并将其存储到一个缓冲区中。 在编写代码时,你需要注意以下几点: 1. 确保你的串口配置和蓝牙模块的配置相匹配。 2. 确保你的发送和接收函数能够正确地处理数据。 3. 确保你的中断服务程序能够正确地处理接收到的数据,并避免出现死锁等问题。 希望这些提示能对你有所帮助。
相关问题

用stm32zet6库函数写一个使用串口三通过hc08蓝牙模块发送数据和串口中断接收数据的程序

以下是使用STM32CubeMX和HAL库函数编写的基本代码,用于通过串口三发送数据和接收数据(使用串口中断)。在本例中,发送和接收的波特率均为9600。 首先,在STM32CubeMX中配置串口三和串口中断。在“Pinout & Configuration”选项卡中,单击MCU上的USART3,并将其配置为“Asynchronous”模式。在“Mode”选项卡中,将波特率设置为9600,并启用“Interrupt Mode”。在“NVIC Settings”选项卡中,启用USART3中断,并配置其优先级。 然后,生成代码并将其导入到您的开发环境中。在main.c中,添加以下代码: ```c #include "stm32f4xx_hal.h" #include <string.h> UART_HandleTypeDef huart3; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART3_UART_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_USART3_UART_Init(); while (1) { char tx_buffer[20] = "Hello, Bluetooth!\r\n"; HAL_UART_Transmit(&huart3, (uint8_t*)tx_buffer, strlen(tx_buffer), 1000); HAL_Delay(1000); } } void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if (huart == &huart3) { // handle received data here } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } static void MX_USART3_UART_Init(void) { huart3.Instance = USART3; huart3.Init.BaudRate = 9600; huart3.Init.WordLength = UART_WORDLENGTH_8B; huart3.Init.StopBits = UART_STOPBITS_1; huart3.Init.Parity = UART_PARITY_NONE; huart3.Init.Mode = UART_MODE_TX_RX; huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart3.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart3) != HAL_OK) { Error_Handler(); } HAL_UART_Receive_IT(&huart3, (uint8_t*)rx_buffer, 1); } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_10; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF7_USART3; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF7_USART3; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); } void Error_Handler(void) { while(1) {} } ``` 在此代码中,我们使用`HAL_UART_Transmit`函数发送数据,使用`HAL_UART_Receive_IT`函数启用中断接收,并在`HAL_UART_RxCpltCallback`函数中处理接收到的数据。 请注意,此代码仅用于演示目的,您需要根据您的具体需求进行修改和优化。

用stm32zet6写一个使用串口三通过hc08蓝牙模块发送数据和串口中断接收数据的程序

以下是一个使用STM32F103ZET6控制器,通过USART3串口和HC08蓝牙模块进行数据通信的例程。在本程序中,我们使用了STM32CubeMX来进行初始化配置,所以您需要使用STM32CubeMX软件生成代码,并将其导入到您的开发环境中。本例程还使用了HAL库提供的函数。 ```c #include "main.h" #include "stdio.h" #include "string.h" UART_HandleTypeDef huart3; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART3_UART_Init(void); char rx_data[1]; int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_USART3_UART_Init(); while (1) { if(HAL_UART_Receive_IT(&huart3, (uint8_t *)rx_data, 1) == HAL_OK) //启用串口中断 { if(rx_data[0] == '1') //判断接收到的数据 { char buffer[20]; sprintf(buffer, "SEND DATA 1\r\n"); //将数据格式化 HAL_UART_Transmit(&huart3, (uint8_t *)buffer, strlen(buffer), 0xFFFF); //发送数据 } else if(rx_data[0] == '2') { char buffer[20]; sprintf(buffer, "SEND DATA 2\r\n"); HAL_UART_Transmit(&huart3, (uint8_t *)buffer, strlen(buffer), 0xFFFF); } } } } void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) //UART接收中断回调函数 { if(huart->Instance == USART3) { HAL_UART_Receive_IT(&huart3, (uint8_t *)rx_data, 1); //重新启用接收中断 } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_OFF; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } static void MX_USART3_UART_Init(void) { huart3.Instance = USART3; huart3.Init.BaudRate = 9600; huart3.Init.WordLength = UART_WORDLENGTH_8B; huart3.Init.StopBits = UART_STOPBITS_1; huart3.Init.Parity = UART_PARITY_NONE; huart3.Init.Mode = UART_MODE_TX_RX; huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart3.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart3) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOB_CLK_ENABLE(); HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14, GPIO_PIN_RESET); GPIO_InitStruct.Pin = GPIO_PIN_14; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } void Error_Handler(void) { } #ifdef USE_FULL_ASSERT void assert_failed(uint8_t *file, uint32_t line) { } #endif ``` 在本例程中,我们使用串口3和HC08蓝牙模块进行数据通信。当接收到数据时,我们会检查数据的内容,并根据数据内容发送不同的数据。在此之前,我们先启用了串口3的中断功能,在接收到数据时,会触发中断回调函数。在中断回调函数中,我们重新启用了接收中断,以便能够继续接收数据。

相关推荐

最新推荐

recommend-type

STM32F103RET6TR中文数据手册.pdf

STM32F103RET6TR中文数据手册,同样适用于STM32F103RE 、 STM32F103ZE 、 STM32F103VE、STM32F103RD、 STM32F103VD、 STM32F103ZD、STM32F103RC、 STM32F103VC、 STM32F103ZC
recommend-type

druid-1.0.11.jar

javaee/javaweb常用jar包,亲测可用,导入到java工程中即可使用
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】MATLAB simulink船舶动力定位模拟器

# 1. MATLAB Simulink 简介** MATLAB Simulink 是 MathWorks 公司开发的一款图形化建模和仿真软件,广泛应用于工程、科学和教育领域。它提供了丰富的模块库和仿真环境,使工程师能够快速构建和仿真复杂系统。 Simulink 的核心概念是基于块状图建模,其中每个模块代表一个特定的功能或组件。用户可以通过拖放模块并连接它们来创建系统模型。Simulink 提供了广泛的模块库,涵盖了信号处理、控制系统、动力学和通信等领域。 此外,Simulink 还支持自定义模块开发,允许用户创建自己的模块来扩展其功能。这使得 Simulink 成为一个高度灵活的仿真平
recommend-type

linux下RS485怎么实现

在Linux下实现RS485通信,需要做以下几个步骤: 1. 确认硬件支持:首先需要确认通信设备硬件是否支持RS485通信,如果不支持需要更换支持RS485通信的硬件设备。 2. 配置串口参数:在Linux下使用RS485通信,需要对串口进行一些特殊的配置。例如,需要将串口设置为半双工模式、开启硬件流控等。可以使用Linux提供的stty命令或者相关API接口进行配置。 3. 编写应用程序:通过Linux提供的串口API接口,编写应用程序实现RS485通信。在应用程序中需要设置对应的串口参数,以及发送和接收数据的逻辑。 4. 配置硬件电平转换器:在使用RS485通信时,需要将串口的逻辑