cv::remap(rectifyImageL1, rectifyImageL2, map[0][0], map[0][1], INTER_LINEAR);
时间: 2024-01-01 20:04:55 浏览: 101
This code snippet is using the OpenCV library to perform image rectification. The rectifyImageL1 is the input image that needs to be rectified, and rectifyImageL2 is the output rectified image. The rectification is done using a set of precomputed maps, map[0][0] and map[0][1], which contain the mapping between the input and output image coordinates. The interpolation method used for remapping is INTER_LINEAR, which is a bilinear interpolation method.
相关问题
解释imgL_rectified = cv2.remap(imgL, left_map1, left_map2, cv2.INTER_LINEAR)
这段代码是对左视图图像进行校正,其中:
- `imgL`:左视图原始图像。
- `left_map1`:左视图的映射矩阵1,用于校正左视图图像。
- `left_map2`:左视图的映射矩阵2,用于校正左视图图像。
- `cv2.INTER_LINEAR`:使用双线性插值法进行像素值的计算。
`cv2.remap()`函数是OpenCV中用于图像重映射的函数,它可以根据给定的映射矩阵对图像进行校正或者变形。在这里,`cv2.remap(imgL, left_map1, left_map2, cv2.INTER_LINEAR)`会将左视图原始图像`imgL`根据左视图的映射矩阵`left_map1`和`left_map2`进行校正,并返回校正后的图像`imgL_rectified`。
这段代码什么意思def run_posmap_300W_LP(bfm, image_path, mat_path, save_folder, uv_h = 256, uv_w = 256, image_h = 256, image_w = 256): # 1. load image and fitted parameters image_name = image_path.strip().split('/')[-1] image = io.imread(image_path)/255. [h, w, c] = image.shape info = sio.loadmat(mat_path) pose_para = info['Pose_Para'].T.astype(np.float32) shape_para = info['Shape_Para'].astype(np.float32) exp_para = info['Exp_Para'].astype(np.float32) # 2. generate mesh # generate shape vertices = bfm.generate_vertices(shape_para, exp_para) # transform mesh s = pose_para[-1, 0] angles = pose_para[:3, 0] t = pose_para[3:6, 0] transformed_vertices = bfm.transform_3ddfa(vertices, s, angles, t) projected_vertices = transformed_vertices.copy() # using stantard camera & orth projection as in 3DDFA image_vertices = projected_vertices.copy() image_vertices[:,1] = h - image_vertices[:,1] - 1 # 3. crop image with key points kpt = image_vertices[bfm.kpt_ind, :].astype(np.int32) left = np.min(kpt[:, 0]) right = np.max(kpt[:, 0]) top = np.min(kpt[:, 1]) bottom = np.max(kpt[:, 1]) center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) old_size = (right - left + bottom - top)/2 size = int(old_size*1.5) # random pertube. you can change the numbers marg = old_size*0.1 t_x = np.random.rand()*marg*2 - marg t_y = np.random.rand()*marg*2 - marg center[0] = center[0]+t_x; center[1] = center[1]+t_y size = size*(np.random.rand()*0.2 + 0.9) # crop and record the transform parameters src_pts = np.array([[center[0]-size/2, center[1]-size/2], [center[0] - size/2, center[1]+size/2], [center[0]+size/2, center[1]-size/2]]) DST_PTS = np.array([[0, 0], [0, image_h - 1], [image_w - 1, 0]]) tform = skimage.transform.estimate_transform('similarity', src_pts, DST_PTS) cropped_image = skimage.transform.warp(image, tform.inverse, output_shape=(image_h, image_w)) # transform face position(image vertices) along with 2d facial image position = image_vertices.copy() position[:, 2] = 1 position = np.dot(position, tform.params.T) position[:, 2] = image_vertices[:, 2]*tform.params[0, 0] # scale z position[:, 2] = position[:, 2] - np.min(position[:, 2]) # translate z # 4. uv position map: render position in uv space uv_position_map = mesh.render.render_colors(uv_coords, bfm.full_triangles, position, uv_h, uv_w, c = 3) # 5. save files io.imsave('{}/{}'.format(save_folder, image_name), np.squeeze(cropped_image)) np.save('{}/{}'.format(save_folder, image_name.replace('jpg', 'npy')), uv_position_map) io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_posmap.jpg')), (uv_position_map)/max(image_h, image_w)) # only for show # --verify # import cv2 # uv_texture_map_rec = cv2.remap(cropped_image, uv_position_map[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0)) # io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_tex.jpg')), np.squeeze(uv_texture_map_rec))
这段代码是一个函数,用于将一张人脸图像进行三维重建并生成该人脸在二维图像上的 UV 位置图。具体步骤如下:
1. 加载人脸图像和拟合参数。
2. 生成人脸三维模型,并进行变换,得到变换后的人脸模型顶点位置。
3. 根据人脸关键点进行裁剪,得到人脸区域的图像,并记录变换参数。
4. 在 UV 空间中渲染人脸模型,并生成 UV 位置图。
5. 保存裁剪后的图像和 UV 位置图。
其中,变换参数包括旋转、平移、缩放等。UV 位置图是将人脸模型在 UV 空间中的位置映射到二维图像上的一张纹理图。
阅读全文