完善代码from openpyxl import load_workbook # 打开第一个Excel文件 wb1 = load_workbook('file1.xlsx') ws1 = wb1.active # 打开第二个Excel文件 wb2 = load_workbook('file2.xlsx') ws2 = wb2.active # 在第一个文件的最后一行之后插入第二个文件的数据 for row in ws2.iter_rows(min_row=2): ws1.append([cell.value for cell in row]) # 保存合并后的文件 wb1.save('merged_file.xlsx'),对多个Excel文件进行合并

时间: 2024-04-16 16:28:29 浏览: 153
RAR

递归目录下文件生成SHA-1加密码,生成Excel文件

要对多个Excel文件进行合并,您可以使用类似的逻辑来处理每个文件。以下是一个示例代码,演示了如何合并多个Excel文件: ```python from openpyxl import load_workbook # 创建一个空的工作簿用于存储合并后的数据 merged_wb = load_workbook('merged_file.xlsx') merged_ws = merged_wb.active # 所有要合并的文件名列表 file_names = ['file1.xlsx', 'file2.xlsx', 'file3.xlsx'] # 遍历每个文件进行合并 for file_name in file_names: # 打开当前文件 wb = load_workbook(file_name) ws = wb.active # 在合并后的工作簿中追加当前文件的内容 for row in ws.iter_rows(min_row=2): merged_ws.append([cell.value for cell in row]) # 关闭当前文件 wb.close() # 保存合并后的文件 merged_wb.save('merged_file.xlsx') ``` 在上面的示例中,我们首先创建了一个空的工作簿(merged_file.xlsx)来存储合并后的数据。然后,我们定义了要合并的所有文件名列表(file_names),并使用循环逐个处理每个文件。对于每个文件,我们打开它,读取其中的数据,并将其追加到合并后的工作簿中。 请确保所有要合并的文件都位于同一目录下,并确保每个文件的数据结构相同,以便正确合并。 希望这可以帮助到您!如果还有其他问题,请随时提问。
阅读全文

相关推荐

#!/bin/env python import numpy as np import pandas as pd import openpyxl,os df_csv = pd.read_csv(r'Permance_a.csv',index_col=0,encoding='utf-8') df_csv.to_excel(r'Permance_a.xlsx') # 打开Excel文件 wb = openpyxl.load_workbook('Permance_a.xlsx') # 选择第一个工作表 ws = wb.active # 循环遍历每一个单元格 for row in ws.iter_rows(): for cell in row: # 判断单元格是否包含% if '%' in str(cell.value): # 将单元格格式设置为数字格式 cell.number_format = '0.00%' # 将单元格值除以100并重新赋值给单元格 cell.value = float(cell.value.strip('%')) / 100 # 保存Excel文件 wb.save('Permance_a.xlsx') # 源表格和目标表格的文件名 source_file = r'Permance_a.xlsx' target_file = r'Permance.xlsx' source_end_col = 8 # 结束列 source_start_col = 5 # 开始列 source_start_row = [2,12,22,32] source_end_row = [11,21,31,41] target_end_col = 6 # 结束列 target_start_col = 3 # 开始列 target_start_row = [7,35,21,49] target_end_row = [16,44,30,58] # 打开两个工作簿 wb1 = openpyxl.load_workbook(source_file) ws1 = wb1.active target_ws_name = 'sd' + source_file[-6] wb2 = openpyxl.load_workbook(target_file) wb2.active.title = target_ws_name ws2 = wb2.active # 将源表格的数据覆盖到目标表格中 for i in range(len(source_start_row)): for row in range(source_start_row[i], source_end_row[i]+1): for col in range(source_start_col, source_end_col+1): value = ws1.cell(row=row, column=col).value ws2.cell(row=target_start_row[i]+row-source_start_row[i], column=target_start_col+col-source_start_col, value=value) # 保存目标表格 wb2.save(target_file) 修改以上代码,将目标文件中数据引用源中工作明修改为target_ws_name

import os import pandas as pd from openpyxl import load_workbook from openpyxl.utils.dataframe import dataframe_to_rows # 指定要合并的文件夹路径 folder_path = r"E:\aaaa\aaaa" fields_to_write = ['aaaa', 'aaaa'] # 获取文件夹中所有的 xlsx 文件路径 xlsx_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.xlsx')] # 创建一个空的 DataFrame 用于存储合并后的数据 merged_data = pd.DataFrame() # 循环读取每个 xlsx 文件,将它们合并到 merged_data 中 for xlsx_file in xlsx_files: # 使用 pandas 读取 xlsx 文件,并清理无效字符引用 wb = load_workbook(filename=xlsx_file, read_only=False, data_only=True, keep_vba=False, keep_links=False, keep_protection=False) for sheet_name in wb.sheetnames: ws = wb[sheet_name] for row in ws.rows: for cell in row: cell.value = cell.value if cell.value is None else str(cell.value).strip() df = pd.read_excel(wb) # 将读取到的数据追加到 merged_data 中 merged_data = merged_data.append(df, ignore_index=True) # 在 merged_data 中添加新的一列数据 merged_data['new_column'] = 'new_value' # 创建一个新的工作簿 wb_new = load_workbook(write_only=True) ws_new = wb_new.create_sheet('merged_data') # 将 DataFrame 中的数据逐行写入到新的工作簿中 rows = dataframe_to_rows(merged_data[fields_to_write + ['new_column']], index=False) for row in rows: ws_new.append(row) # 保存合并后的数据到新的 xlsx 文件中 wb_new.save(r"E:\aaaa\aaaa\merged_file.xlsx")使用此代码会出现ValueError: Invalid file path or buffer object type: <class 'openpyxl.workbook.workbook.Workbook'>的报错,请优化下

import requests from bs4 import BeautifulSoup import openpyxl from time import sleep # 设置请求头,模拟浏览器访问 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36'} # 从天眼查获取公司邮箱和电话 def get_info(company): email = '' phone = '' url = 'https://www.tianyancha.com/search?key=' + company r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, 'html.parser') # try: # 获取公司详情页链接 company_url = soup.find_all('a', class_='index_alink__zcia5 link-click')[0].get('href') r = requests.get(company_url, headers=headers) soup = BeautifulSoup(r.text, 'html.parser') # 获取公司邮箱和电话 email = soup.find_all('span', class_='index_detail-email__B_1Tq')[0].text sleep(0.5) phone = soup.find('span',class_='index_detail-tel__fgpsE').text # except: # pass # return email,phone # 从Excel文件中读取公司名称 def read_from_excel(file_path): wb = openpyxl.load_workbook(file_path) ws = wb.active company_list = [] for row in ws.iter_rows(min_row=2, values_only=True): company_list.append(row[0]) return company_list # 将公司邮箱和电话写入Excel文件 def write_to_excel(company_list): wb = openpyxl.Workbook() ws = wb.active ws.title = 'Company Info' # 写入表头 ws.cell(row=1, column=1, value='Company Name') ws.cell(row=1, column=2, value='Email') ws.cell(row=1, column=3, value='Phone') # 写入数据 for i, company in enumerate(company_list): email,phone = get_info(company) ws.cell(row=i+2, column=1, value=company) ws.cell(row=i+2, column=2, value=email) ws.cell(row=i+2, column=3, value=phone) # 保存Excel文件 wb.save('company_info.xlsx') if __name__ == '__main__': file_path = 'company_names.xlsx' company_list = read_from_excel(file_path) write_to_excel(company_list)优化这段代码

最新推荐

recommend-type

python利用openpyxl拆分多个工作表的工作簿的方法

在给定的代码中,`load_workbook()`函数用于加载Excel文件,返回一个Workbook对象,我们可以获取该对象的sheetnames属性来查看所有工作表的名称。 ```python from openpyxl import load_workbook wb = load_...
recommend-type

给你一个jingqsdfgnvsdljk

给你一个jingqsdfgnvsdljk
recommend-type

MPSK调制解调MATLAB仿真源代码

MPSK调制解调MATLAB仿真源代码,包括调制的实现、解调的实现、运行结果等
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【损失函数与批量梯度下降】:分析批量大小对损失函数影响,优化模型学习路径

![损失函数(Loss Function)](https://img-blog.csdnimg.cn/20190921134848621.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc3MjUzMw==,size_16,color_FFFFFF,t_70) # 1. 损失函数与批量梯度下降基础 在机器学习和深度学习领域,损失函数和批量梯度下降是核心概念,它们是模型训练过程中的基石。理解它们的基础概念对于构建