import openpyxl # 打开excel文件 wb = openpyxl.load_workbook("D:/1/总表/05161.xlsx") # 选择要读取的工作簿 wb = wb['0516-200A'] # 指定要提取的元素坐标 elements = [(12,12)] # 定义新文件的文件名和工作簿名称 new_file_name = 'D:/1/总表/new.xlsx' new_sheet_name = '提取数据' # 创建新Excel文件和工作簿 new_wb = openpyxl.Workbook() new_ws = new_wb.active new_ws.title = new_sheet_name # 逐行读取原始Excel文件,提取指定元素数据并按行排列输出到新文件 for row in range(1, wb.max_row + 1): new_row = [] for col in range(1, wb.max_column + 1): if (row, col) in elements: new_row.append(wb.cell(row=row, column=col).value) if new_row: new_ws.append(new_row) # 保存新Excel文件 new_wb.save(new_file_name)

时间: 2024-02-13 18:03:35 浏览: 119
PDF

Python Excel处理库openpyxl使用详解

这段代码是用Python中openpyxl库实现的一个Excel文件的读取和提取部分数据的功能,并将提取的数据输出到一个新的Excel文件中。 具体实现过程为: 1.导入openpyxl库 2.打开要读取的Excel文件 3.选择要读取的工作簿 4.指定要提取的元素坐标 5.定义新文件的文件名和工作簿名称 6.创建新Excel文件和工作簿 7.逐行读取原始Excel文件,提取指定元素数据并按行排列输出到新文件 8.保存新Excel文件 在这个过程中,openpyxl库提供了许多操作Excel文件的函数和方法,例如load_workbook()函数用于打开Excel文件,max_row属性和max_column属性用于获取Excel表格的行数和列数,cell()方法用于获取指定单元格的数据等。通过这些函数和方法的组合,可以实现对Excel文件的读取和操作。
阅读全文

相关推荐

import requests from bs4 import BeautifulSoup import openpyxl from time import sleep # 设置请求头,模拟浏览器访问 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36'} # 从天眼查获取公司邮箱和电话 def get_info(company): email = '' phone = '' url = 'https://www.tianyancha.com/search?key=' + company r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, 'html.parser') # try: # 获取公司详情页链接 company_url = soup.find_all('a', class_='index_alink__zcia5 link-click')[0].get('href') r = requests.get(company_url, headers=headers) soup = BeautifulSoup(r.text, 'html.parser') # 获取公司邮箱和电话 email = soup.find_all('span', class_='index_detail-email__B_1Tq')[0].text sleep(0.5) phone = soup.find('span',class_='index_detail-tel__fgpsE').text # except: # pass # return email,phone # 从Excel文件中读取公司名称 def read_from_excel(file_path): wb = openpyxl.load_workbook(file_path) ws = wb.active company_list = [] for row in ws.iter_rows(min_row=2, values_only=True): company_list.append(row[0]) return company_list # 将公司邮箱和电话写入Excel文件 def write_to_excel(company_list): wb = openpyxl.Workbook() ws = wb.active ws.title = 'Company Info' # 写入表头 ws.cell(row=1, column=1, value='Company Name') ws.cell(row=1, column=2, value='Email') ws.cell(row=1, column=3, value='Phone') # 写入数据 for i, company in enumerate(company_list): email,phone = get_info(company) ws.cell(row=i+2, column=1, value=company) ws.cell(row=i+2, column=2, value=email) ws.cell(row=i+2, column=3, value=phone) # 保存Excel文件 wb.save('company_info.xlsx') if __name__ == '__main__': file_path = 'company_names.xlsx' company_list = read_from_excel(file_path) write_to_excel(company_list)优化这段代码

import pandas as pd import openpyxl # import matplotlib.pyplot as plt import numpy as np from sklearn.ensemble import AdaBoostClassifier from sklearn.model_selection import train_test_split # 打开Excel文件 wb = openpyxl.load_workbook('./处理过的训练集/987027.xlsx') # 选择需要读取的工作表 ws = wb['Sheet1'] # 读取第一列第二行之后的数据 data = [] for row in ws.iter_rows(min_row=2, min_col=1, values_only=True): data.append(row[0]) # 打印读取的数据 # print(data) # # 将浮点型数据按照等宽离散化的方法转化为离散型数据 # bin_edges = np.linspace(min(data), max(data), num=10) # discretized_data = np.digitize(data, bin_edges) # # 打印转化后的数据 # print(discretized_data) # 假设数据共有N个点,采样周期为0.25秒 N = len(data) t = np.arange(N) * 0.25 # labels2 = pd.cut(t, bins=10, labels=False) #组合时间序列和采样值 data1 = np.column_stack((t,data)) print(data1[:10]) # 打印前10行数据 # train_test_split函数用于将数据集划分为训练集和测试集,其中test_size参数指定了测试集所占的比例, # random_state参数指定了随机种子,以保证每次划分的结果相同。 X_train, X_test, y_train, y_test = train_test_split(data1[:, :-1], data1[:, -1], test_size=0.2, random_state=42) clf = AdaBoostClassifier(n_estimators=100, random_state=0) clf.fit(X_train, y_train) clf.predict([[0,0,0,0]]) clf.score(X_train, y_train)报错ValueError: X has 2 features, but AdaBoostClassifier is expecting 1 features as input.

import os import pandas as pd from openpyxl import load_workbook from openpyxl.utils.dataframe import dataframe_to_rows # 指定要合并的文件夹路径 folder_path = r"E:\aaaa\aaaa" fields_to_write = ['aaaa', 'aaaa'] # 获取文件夹中所有的 xlsx 文件路径 xlsx_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.xlsx')] # 创建一个空的 DataFrame 用于存储合并后的数据 merged_data = pd.DataFrame() # 循环读取每个 xlsx 文件,将它们合并到 merged_data 中 for xlsx_file in xlsx_files: # 使用 pandas 读取 xlsx 文件,并清理无效字符引用 wb = load_workbook(filename=xlsx_file, read_only=False, data_only=True, keep_vba=False, keep_links=False, keep_protection=False) for sheet_name in wb.sheetnames: ws = wb[sheet_name] for row in ws.rows: for cell in row: cell.value = cell.value if cell.value is None else str(cell.value).strip() df = pd.read_excel(wb) # 将读取到的数据追加到 merged_data 中 merged_data = merged_data.append(df, ignore_index=True) # 在 merged_data 中添加新的一列数据 merged_data['new_column'] = 'new_value' # 创建一个新的工作簿 wb_new = load_workbook(write_only=True) ws_new = wb_new.create_sheet('merged_data') # 将 DataFrame 中的数据逐行写入到新的工作簿中 rows = dataframe_to_rows(merged_data[fields_to_write + ['new_column']], index=False) for row in rows: ws_new.append(row) # 保存合并后的数据到新的 xlsx 文件中 wb_new.save(r"E:\aaaa\aaaa\merged_file.xlsx")使用此代码会出现ValueError: Invalid file path or buffer object type: <class 'openpyxl.workbook.workbook.Workbook'>的报错,请优化下

from flask import Flask, render_template, request import pandas as pd from openpyxl import load_workbook app = Flask(__name__) @app.route('/') def index(): return render_template('index2.html') @app.route('/submit', methods=['POST']) def submit(): # 获取表单数据 line = request.form['line'] date = request.form['date'] model = request.form['model'] lists = request.form['lists'] number = request.form['number'] prod_date = request.form['prod_date'] shift = request.form['shift'] prod_line = request.form['prod_line'] responsible = request.form['responsible'] # 表单验证:检查是否所有表单字段都已填写 if not all([line, date, model, lists, number, prod_date, shift, prod_line, responsible]): return "<script>alert('请填写完整表单信息!');history.back();</script>" else: # 在这里添加提交表单信息的代码 return "<script>alert('提交成功!');window.location.href='/';</script>" # 将数据存储到 Excel 文件中 file_path = 'D:/data.xlsx' wb = load_workbook(file_path) ws = wb.active ws.append([line, date, model, lists, number, prod_date, shift, prod_line, responsible]) wb.save(file_path) return render_template('index2.html') @app.route('/history') def history(): # 从 Excel 文件中读取历史记录 file_path = 'D:/data.xlsx' df = pd.read_excel(file_path,keep_default_na=False) # 获取查询参数 query_date = request.args.get('date') query_line = request.args.get('line') query_model = request.args.get('model') # 进行查询 if query_date: df = df[df['确认日期'] == query_date] if query_line: df = df[df['确认线别'] == query_line] if query_model: df = df[df['异常机种'] == query_model] # 生成汇总图表 chart_data = df.groupby('异常现象').size().reset_index(name='count') chart_labels = chart_data['异常现象'].tolist() chart_values = chart_data['count'].tolist() return render_template('history.html', data=df.to_dict('records'), chart_labels=chart_labels, chart_values=chart_values) @app.route('/chart') def chart(): return render_template('chart.html') if __name__ == '__main__': app.run(debug=True)

最新推荐

recommend-type

python 的 openpyxl模块 读取 Excel文件的方法

Python 的 `openpyxl` 模块是处理 Microsoft Excel 文件的强大工具,特别是对于读取和写入 `.xlsx` 格式的文件。这个模块允许我们高效地操作 Excel 工作簿中的工作表、单元格和数据。 1. **Excel 基础概念** - **...
recommend-type

Java-美妆神域_3rm1m18i_221-wx.zip

Java-美妆神域_3rm1m18i_221-wx.zip
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率

![数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率](https://img-blog.csdnimg.cn/img_convert/ea0cc949288a77f9bc8dde5da6514979.png) # 摘要 数字信号处理作为信息科技领域的重要分支,涵盖了从基础理论到高级应用的广泛内容。本文首先介绍了数字信号处理的基础知识,包括基本概念、时域与频域分析、以及核心算法和理论框架。接着,详细探讨了实现信号采样和量化、滤波器设计、以及信号增强和重建实践技巧。文章进一步深入到高级应用,包括信号压缩技术、多维信号处理,以及人工智能技术在信号处理中的集成。最后,本文评述了数字信号处理
recommend-type

给定不超过6的正整数A,考虑从A开始的连续4个数字。请输出所有由它们组成的无重复数字的3位数。编写一个C语言程序

为了编写一个C语言程序来解决这个问题,我们需要遍历给定范围内的所有连续4个数字,并检查每个组合是否能构成一个无重复数字的三位数。这里是一个简单的示例程序: ```c #include <stdio.h> // 函数定义,用于生成并检查无重复数字的3位数 void generate_unique_3_digit(int A) { for (int i = A; i <= A + 3; i++) { int num = i * 100 + (i+1) * 10 + (i+2); if (num >= 100 && num < 1000 && is_uni