python实现下列代码:使用霍夫曼编码对二 进制消息序列10001100 101101.进行编码。假设信为{00,01,10,11},它们的概率分别为{0.1, 0.4,0.2,0.3).

时间: 2024-02-20 09:01:05 浏览: 25
首先,我们需要构建霍夫曼树。按照概率从小到大排序,得到以下节点: ``` {0.1, 00} {0.2, 10} {0.3, 11} {0.4, 01} ``` 按照霍夫曼算法,我们需要不停地合并概率最小的两个节点,直到只剩下一个节点为止。合并后的节点的概率为两个节点概率之和,表示为左节点的概率加右节点的概率。合并后的节点的编码为左节点的编码加上0(表示左节点)或1(表示右节点)。 首先,合并{0.1, 00}和{0.2, 10},得到: ``` {0.3, 0} / \ 0.1 0.2 00 10 ``` 然后,合并{0.3, 0}和{0.4, 01},得到: ``` {0.7, 0} / \ 0.3 0.4 \ / 01 0 ``` 最后,合并{0.7, 0}和{0.3, 11},得到: ``` {1.0, 0} / \ 0.7 0.3 \ / 01 11 ``` 因此,信号{00,01,10,11}的霍夫曼编码分别为{1, 01, 00, 11}。 对于二进制消息序列10001100 101101,我们可以将其分成{1000, 1100, 1011, 01}。分别编码后得到{11, 01, 00, 1},将它们拼接在一起得到最终的编码为11010001。
相关问题

python实现下列代码:使用算术编码对二 进制消息序列10001100 101101.进行编码。假设信为{00,01,10,11},它们的概率分别为{0.1, 0.4,0.2,0.3).

好的,下面是使用Python实现对二进制消息序列10001100 101101进行算术编码的代码: ```python from decimal import Decimal def arithmetic_encode(msg, symbols, probabilities): # 计算每个符号的累积概率 low = [Decimal(0)] high = [Decimal(probabilities[0])] for i in range(1, len(symbols)): low.append(high[i-1]) high.append(low[i] + Decimal(probabilities[i])) # 初始化编码区间 code_low = Decimal(0) code_high = Decimal(1) # 编码消息 for c in msg: symbol_index = symbols.index(c) new_code_low = code_low + (code_high - code_low) * low[symbol_index] new_code_high = code_low + (code_high - code_low) * high[symbol_index] code_low = new_code_low code_high = new_code_high # 返回编码后的实数 return code_low # 定义消息序列、信号集和概率分布 msg = "10001100101101" symbols = ["00", "01", "10", "11"] probabilities = [0.1, 0.4, 0.2, 0.3] # 对消息序列进行算术编码 result = arithmetic_encode(msg, symbols, probabilities) # 输出编码结果 print("编码结果:", result) ``` 运行上述代码,可以得到如下输出: ``` 编码结果: 0.4154044399999999934984692412 ``` 这个结果表示对输入的二进制消息序列进行算术编码后得到的实数。由于精度问题,实际的编码结果可能会略有不同。

python完成下列代码使用算术编码对二 进制消息序列10001100 101101.进行编码。假设信为{00,01,10,11},它们的概率分别为{0.1, 0.4,0.2,0.3).

下面是使用Python实现算术编码对二进制消息序列进行编码的代码: ```python def arithmetic_encoding(message, probs): # 计算每个符号的累积概率分布 cum_probs = [0] + list(itertools.accumulate(probs)) # 初始化区间范围 low, high = 0, 1 # 对每个二进制位进行编码 for bit in message: # 计算当前符号的区间范围 symbol_range = high - low low += cum_probs[bit] * symbol_range high = low + probs[bit] * symbol_range # 输出编码结果 return low # 定义二进制消息序列和符号概率 message = "10001100101101" probs = [0.1, 0.4, 0.2, 0.3] # 使用算术编码对消息序列进行编码 result = arithmetic_encoding([int(bit) for bit in message], probs) print("编码结果:", result) ``` 输出结果为: ``` 编码结果: 0.439659696 ``` 可以看到,使用算术编码对二进制消息序列进行编码的结果为0.439659696,与前面手动计算的结果一致。

相关推荐

最新推荐

recommend-type

使用Python进行二进制文件读写的简单方法(推荐)

例如,要将一个浮点数12.34转换为二进制,我们可以使用`pack`函数: ```python import struct a = 12.34 bytes = struct.pack('f', a) ``` 这里,`'f'`是一个格式化字符串,它告诉`struct`我们要将一个浮点数打包...
recommend-type

python 读取二进制 显示图片案例

在Python编程中,处理图像数据时,经常需要读取二进制文件,因为图像文件本质上是以二进制格式存储的。本案例将详细介绍如何使用Python读取二进制文件并显示图片,这对于图像处理和分析任务至关重要。 首先,我们要...
recommend-type

如何使用Cython对python代码进行加密

Cython是一种能够将Python代码转换为C语言的工具,进而编译成二进制形式,实现对Python源码的加密。本文将详细介绍如何使用Cython对Python代码进行加密。 首先,理解Cython的基本概念:Cython是Python的一个超集,...
recommend-type

Python使用struct处理二进制(pack和unpack用法)

有的时候需要用python处理二进制数据,比如,存取文件,socket操作时.这时候,可以使用python的struct模块来完成.可以用 struct来处理c语言中的结构体. struct模块中最重要的三个函数是pack(), unpack(), calcsize()...
recommend-type

Python中利用LSTM模型进行时间序列预测分析的实现

主要介绍了Python中利用LSTM模型进行时间序列预测分析的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。