self.padding, self.dilation, self.groups) RuntimeError: expected scalar type Byte but found Float
时间: 2023-10-13 11:48:50 浏览: 169
这个错误通常是由于数据类型不匹配导致的。在你的代码中,可能存在一个期望输入为Byte类型的地方,但实际上输入的是Float类型。
要解决这个问题,你可以尝试将输入数据转换为Byte类型。你可以使用`torch.ByteTensor()`或`tensor.byte()`方法将Float类型的数据转换为Byte类型。
例如,如果你的输入张量名为`input_tensor`,你可以尝试以下代码:
```
input_tensor = input_tensor.byte()
```
确保在将数据传递给期望Byte类型的函数之前进行类型转换。这样应该能够解决这个问题。如果还有其他问题,请提供更多的代码和错误信息,以便我可以更好地帮助你。
相关问题
class ACmix(nn.Module): def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1): super(ACmix, self).__init__() self.in_planes = in_planes self.out_planes = out_planes self.head = head self.kernel_att = kernel_att self.kernel_conv = kernel_conv self.stride = stride self.dilation = dilation self.rate1 = torch.nn.Parameter(torch.Tensor(1)) self.rate2 = torch.nn.Parameter(torch.Tensor(1)) self.head_dim = self.out_planes // self.head self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1) self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2 self.pad_att = torch.nn.ReflectionPad2d(self.padding_att) self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride) self.softmax = torch.nn.Softmax(dim=1) self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False) self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes, kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1, stride=stride) self.reset_parameters()逐行解释代码
这段代码是定义了一个名为ACmix的类,继承自PyTorch中的nn.Module。它包含了一些卷积、全连接、非线性激活函数等层,用于实现图像处理任务中的注意力机制和特征融合。
具体来说,逐行解释代码如下:
```
class ACmix(nn.Module):
def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1):
super(ACmix, self).__init__()
```
定义ACmix类,其中包含了初始化函数__init__()。其中in_planes表示输入特征图的通道数,out_planes表示输出特征图的通道数,kernel_att表示注意力机制的卷积核大小,head表示注意力机制的头数,kernel_conv表示特征融合的卷积核大小,stride表示卷积的步长,dilation表示卷积的膨胀率。
```
self.in_planes = in_planes
self.out_planes = out_planes
self.head = head
self.kernel_att = kernel_att
self.kernel_conv = kernel_conv
self.stride = stride
self.dilation = dilation
self.rate1 = torch.nn.Parameter(torch.Tensor(1))
self.rate2 = torch.nn.Parameter(torch.Tensor(1))
self.head_dim = self.out_planes // self.head
```
将输入的参数保存到类的成员变量中,其中rate1和rate2是需要学习的参数,用于调整注意力机制中的权重。
```
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
```
定义三个卷积层,其中conv1和conv2用于计算注意力机制,conv3用于特征融合。
```
self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1)
```
定义一个卷积层,用于将注意力机制中的特征图转换为头数的通道数。
```
self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2
self.pad_att = torch.nn.ReflectionPad2d(self.padding_att)
self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride)
self.softmax = torch.nn.Softmax(dim=1)
```
定义一些辅助层,其中padding_att表示注意力机制的填充大小,pad_att表示进行反射填充的层,unfold表示对特征图进行展开的层,softmax表示对展开后的特征图进行softmax操作的层。
```
self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False)
self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes,
kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1,
stride=stride)
```
定义特征融合的卷积层和深度可分离卷积层,其中fc层用于将展开后的特征图进行特征融合,dep_conv层用于将融合后的特征图进行输出。
```
self.reset_parameters()
```
初始化模型参数。
File "/home/zhanghongxin/.conda/envs/DSLR/lib/python3.7/site-packages/torch/nn/modules/module.py", line 541, in __call__ result = self.forward(*input, **kwargs) File "/home/zhanghongxin/exercise/DSLR-release/model.py", line 96, in forward out = self.conv(x) File "/home/zhanghongxin/.conda/envs/DSLR/lib/python3.7/site-packages/torch/nn/modules/module.py", line 541, in __call__ result = self.forward(*input, **kwargs) File "/home/zhanghongxin/.conda/envs/DSLR/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 345, in forward return self.conv2d_forward(input, self.weight) File "/home/zhanghongxin/.conda/envs/DSLR/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 342, in conv2d_forward self.padding, self.dilation, self.groups) RuntimeError: Given groups=1, weight of size 64 256 3 3, expected input[1, 9, 512, 256] to have 256 channels, but got 9 channels instead
这个错误提示显示你需要检查你的输入张量的维度是否正确。具体来说,你期望输入张量的形状为[1, 9, 512, 256],其中1代表batch size,9代表输入通道数,512代表输入图像的高度,256代表输入图像的宽度。但是错误提示显示,输入张量的最后一个维度应该是256,但是实际上是9,即输入通道数。这可能是因为你的输入张量的通道数与你的卷积层期望的通道数不匹配。你需要确保你的输入张量的通道数与你的卷积层期望的通道数匹配。你可以通过检查输入张量的维度和卷积层的权重张量的维度来确保它们匹配。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)