改写以下代码为python:figure %set(gcf,'visible','off') warning off all; Signal3=Signal2(1:length(Signal2),:); D11=Signal3(:,2); Y11=log(Signal3(:,3)); Y22=Signal3(:,8); Y22(find(isnan(Y22)==1)) = 0; [AX1,H11,H12]=plotyy(D11,Y11,D11,Y22); set(get(AX1(1),'Ylabel'),'string','log(Price)','color','k','Fontsize',8); set(get(AX1(2),'Ylabel'),'string','CCPI_q','color','k','Fontsize',8); step1=(max(D11)-min(D11))/5; TICK=[D11(1) D11(328) D11(529) D11(751) D11(987) D11(1220) D11(2492) D11(2698) D11(end)]; set(AX1(1),'ylim',[-4,10],'xlim',[min(D11),max(D11)],'Xtick',TICK,'Fontsize',8); set(AX1(2),'ylim',[0,max(Y22)],'xlim',[min(D11),max(D11)],'Xtick',TICK,'Fontsize',8); set(gca,'Xticklabel',datestr(TICK,'yyyy.mm.dd'),'Fontsize',8); tick2=(max(Y22)-0)/7; set(AX1(1),'Ytick',-4:2:10,'Ycolor','k'); set(AX1(2),'Ytick',0:tick2:(max(Y22)),'Ycolor','k'); ytick=get(AX1(2),'Ytick'); for i = 1:length(ytick) yticklabel{i} = sprintf('%.2f',ytick(i)); end set(AX1(2),'Yticklabel',yticklabel); set(H11,'linestyle','-','color','k','linewidth',1); set(H12,'linestyle','-','color','r','linewidth',1); set(gcf,'unit','centimeters','position',[0,0,32,11]) grid on q=q*100;

时间: 2023-08-06 11:11:32 浏览: 76
import matplotlib.pyplot as plt import numpy as np plt.figure() plt.gca().set_visible(False) plt.warning('off') Signal3 = Signal2[:len(Signal2), :] D11 = Signal3[:, 1] Y11 = np.log(Signal3[:, 2]) Y22 = Signal3[:, 7] Y22[np.isnan(Y22) == 1] = 0 fig, AX1 = plt.subplots() H11, = AX1.plot(D11, Y11, color='k', linestyle='-', linewidth=1) H12, = AX1.plot(D11, Y22, color='r', linestyle='-', linewidth=1) AX1.set_ylabel('log(Price)', color='k', fontsize=8) AX2 = AX1.twinx() AX2.set_ylabel('CCPI_q', color='k', fontsize=8) AX1.set_ylim(-4, 10) AX2.set_ylim(0, max(Y22)) step1 = (max(D11) - min(D11)) / 5 TICK = [D11[0], D11[327], D11[528], D11[750], D11[986], D11[1219], D11[2491], D11[2697], D11[-1]] AX1.set_xlim(min(D11), max(D11)) AX1.set_xticks(TICK) AX1.set_xticklabels([str(d) for d in TICK], fontsize=8) AX1.set_yticks(np.arange(-4, 12, 2)) AX2.set_yticks(np.arange(0, max(Y22), max(Y22) / 7)) ytick = AX2.get_yticks() yticklabel = ['%.2f' % y for y in ytick] AX2.set_yticklabels(yticklabel) plt.grid(True) plt.gcf().set_size_inches(32, 11) q = q * 100
阅读全文

相关推荐

帮我看一下这段代码有什么问题 clear all; fname='G:\CMIP6 data\map_hed\ACCESS-CM2\ssp126.xlsx'; [data]=xlsread(fname); lat = ncread('G:\CMIP6 data\CMIP6_china\Precipitation\ACCESS-CM2 (Australia)\pr_day_ACCESS-CM2_ssp126_r1i1p1f1_gn_20150101-21001231_v20191108.nc','lat'); lon = ncread('G:\CMIP6 data\CMIP6_china\Precipitation\ACCESS-CM2 (Australia)\pr_day_ACCESS-CM2_ssp126_r1i1p1f1_gn_20150101-21001231_v20191108.nc','lon'); % [x,y]=meshgrid(lon,lat); filename4=('E:\XB\xibei\NewFolder\xeibei84.shp'); Shape=shaperead(filename4); Sx=Shape.X;Sy=Shape.Y; R=m_shaperead('E:\XB\xibei\xb_wang');clf; close all a=find(lon>=70 & lon<=140); b=find(lat>=20 & lat<=60); lon_num=length(a);lat_num=length(b); lonn=lon(a,:);latt=lat(b,:); % D=num2cell(data); for i=1 for g=1:length(lon); x=lon(g); for h=1:length(lat); y=lat(h); U=inpolygon(x,y,Sy,Sx); if U==0 data(g,h,:)=nan; end end end end set(gcf,'Position',[0.1 0.1 1500 1000]); [X,Y]=meshgrid(lonn,latt);hold on; m_proj('miller','lon',[70 110],'lat',[30 50]); uu=m_pcolor(X,Y,data'); shading interp; set(uu,'edgecolor','none') % m_grid('linewi',2,'linest','none','xtick',[70:5:115],'ytick',[30:5:50],'fontsize',22,'linewidth',2); % WBGYR % colorbar % h=colorbar('eastoutside'); colormap('autumn'); colorbar; % set(h,'ticks',[-0.1:0.05:0.3],'linewidth',2,'fontsize',22); % caxis([-0.1 0.3]); for v=1:length(R.ncst) m_line(R.ncst{v}(:,1),R.ncst{v}(:,2),'Color','k','Linewidth',0.5); end hold on; % title(' ','fontsize',25); % saveas(figure(1),'spatial.tif') % close all %

clc clf clear all; tic Nt = 1; G = 4; N = 20; %number of RIS Ng = N/G; Nr = 3; %number of receive antenna It = 80000; M = 4; B = log2(G) + log2(M); W = 8; snr = -10:2:12; %signal-to-noise rate sigma = sqrt(1./(10 .^ (snr / 10 )) ); %sigma MPSK = pskmod(0:M-1,M); %Q = diag([chirp_table{1,chirp_nck(randi(size(chirp_nck,1)),:)}]) %Q=blkdiag(Fi_table{1},Fi_table{4},Fi_table{9},Fi_table{11}); %Q=diag(reshape(hadamard_code,1,K*N));%blkdiag(Fi_table{1},Fi_table{1},Fi_table{1}); diag([1 -1 1 -1 1 1 -1 -1]) for ii = 1:size(sigma,2) %parallel computing errorBits = 0; snr(ii) tic parfor jj = 1 : It h1=(randn(N,Nt)+1j*randn(N,Nt))/sqrt(2); h2=(randn(Nr,N)+1j*randn(Nr,N))/sqrt(2); hd=(randn(Nr,Nt)+1j*randn(Nr,Nt))/sqrt(2); Q = zeros(N,N,G); for kk = 1:G Q((kk-1)*Ng+1:kk*Ng,(kk-1)*Ng+1:kk*Ng,kk)=diag(exp(1j*2*pi*rand(1,Ng))); end for uu = 1:W inputIndex_group = randi(G); inputIndex_psk = randi(M); Q_choose = Q(:,:,inputIndex_group); St = MPSK(inputIndex_psk); V = (randn(Nr,1 ) + 1j*randn(Nr,1) ) ./sqrt(2) .*sigma(ii); %noise matrix Yt = (h2*Q_choose*h1+hd) * St + V; dis = zeros(G,M); for mm = 1:G for nn = 1:M dis(mm,nn) = norm(Yt-(h2*Q(:,:,mm)*h1+hd)*MPSK(nn),"fro"); end end [outputIndex_group,outputIndex_psk] = find(dis== min(min(dis))); %output the decode index errorBits = errorBits + sum( de2bi( inputIndex_group - 1 , log2(G)) ~= de2bi( outputIndex_group -1 , log2(G)) ); %sum of error Bits errorBits = errorBits + sum( de2bi( inputIndex_psk - 1 , log2(M)) ~= de2bi( outputIndex_psk -1 , log2(M)) ); end end toc bers(ii) = errorBits / (It*(W)* B); end toc figure('name','result'); semilogy(snr,bers,color='k',Marker='square',LineStyle='-',LineWidth=2) grid on set(gca, 'LineWidth',1) legend('RM,K=4,N=20,Nr=3,M=4') xlabel("SNR [dB]"); ylabel("BER") set(gcf,'color','w');都用到了什么算法

最新推荐

recommend-type

是德科技:5G资料.pdf

- **以最低要求为指导**:遵循3GPP RAN各工作组的技术报告和技术规范,如RAN1至RAN5,理解并实施最低性能标准。 - **利用灵活的高性能仪器**:为了应对测试系统的复杂性,需要选择能够适应不断变化标准的测试设备...
recommend-type

python绘制趋势图的示例

在Python中,数据可视化是一个强大的工具,可以帮助我们理解并传达复杂的数据信息。本示例主要讲解了如何使用Python的matplotlib库来绘制趋势图,这对于数据分析和报告非常有用。首先,我们需要导入必要的库: ```...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001