GP2Y0E03 例程
时间: 2024-02-05 16:03:50 浏览: 187
以下是 GP2Y0E03 的 Arduino 例程:
```
int GP2Y0E03_PIN = A0; // 将输出引脚连接到 Arduino 的模拟输入引脚 A0
void setup() {
Serial.begin(9600); // 以 9600 bps 初始化串行通信
}
void loop() {
int val = analogRead(GP2Y0E03_PIN); // 读取模拟输入引脚的值
float distance = 13*pow(val, -0.58); // 根据数据手册计算距离(单位:厘米)
Serial.println(distance); // 打印距离到串行端口
delay(1000); // 延迟1秒
}
```
在这个例程中,我们将 GP2Y0E03 的输出引脚连接到 Arduino 的模拟输入引脚 A0。然后我们在 `setup()` 函数中初始化串行通信,使得我们可以在监视器窗口中查看传感器的距离测量结果。在 `loop()` 函数中,我们通过 `analogRead()` 函数读取模拟输入引脚的值,然后根据数据手册提供的公式计算距离。最后,我们将结果打印到串行端口,并延迟1秒钟以便于读取数据。
相关问题
GP2Y0E03 单片机例程
下面是GP2Y0E03红外距离传感器的单片机例程(以STM32为例):
```c
#include "stm32f10x.h"
#include <stdio.h>
#define IR_Pin GPIO_Pin_0
#define IR_Port GPIOA
#define IR_RCC RCC_APB2Periph_GPIOA
void Init_IR(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(IR_RCC, ENABLE);
GPIO_InitStructure.GPIO_Pin = IR_Pin;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(IR_Port, &GPIO_InitStructure);
}
int main(void)
{
uint16_t ir_value;
float distance;
char str[50];
Init_IR();
while(1)
{
ir_value = ADC_GetConversionValue(ADC1);
distance = 27.86 * pow(ir_value, -1.15); // 根据公式计算距离
sprintf(str, "Distance: %.2f cm\r\n", distance);
printf("%s", str);
delay_ms(500);
}
}
```
注意:该例程仅供参考,具体实现可能需要根据具体情况进行调整和优化。
GP2Y0E03 stm32f103c8t6单片机例程
GP2Y0E03是一款红外距离传感器,可以通过测量反射回来的红外线来确定物体的距离。而stm32f103c8t6是一款单片机芯片,可以通过编写程序实现对GP2Y0E03传感器的控制和数据读取。
下面是一个简单的GP2Y0E03 stm32f103c8t6单片机例程:
```c
#include "stm32f10x.h"
#include "stdio.h"
#include "delay.h"
#define GP2Y0E03_PIN GPIO_Pin_0
#define GP2Y0E03_PORT GPIOA
#define GP2Y0E03_RCC RCC_APB2Periph_GPIOA
void USART_Config(void);
void GPIO_Config(void);
void ADC_Config(void);
int main(void)
{
uint16_t ADC_Value;
USART_Config();
GPIO_Config();
ADC_Config();
while(1)
{
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC));
ADC_Value = ADC_GetConversionValue(ADC1);
printf("Distance: %.2f cm\r\n", 3027.4 / (ADC_Value - 4.0));
delay_ms(100);
}
}
void USART_Config(void)
{
USART_InitTypeDef USART_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);
/* Configure USART1 Rx (PA10) as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Configure USART1 Tx (PA9) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* USART1 configuration */
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART1, &USART_InitStructure);
/* Enable USART1 */
USART_Cmd(USART1, ENABLE);
}
void GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(GP2Y0E03_RCC, ENABLE);
/* Configure GP2Y0E03 pin as analog input */
GPIO_InitStructure.GPIO_Pin = GP2Y0E03_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(GP2Y0E03_PORT, &GPIO_InitStructure);
}
void ADC_Config(void)
{
ADC_InitTypeDef ADC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
/* ADC configuration */
ADC_DeInit(ADC1);
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 1;
ADC_Init(ADC1, &ADC_InitStructure);
/* Configure GP2Y0E03 channel */
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);
/* Enable ADC */
ADC_Cmd(ADC1, ENABLE);
}
```
这个例程中,首先是对USART、GPIO和ADC进行了初始化配置,然后在主循环中不断读取GP2Y0E03传感器的数据并计算出距离。具体实现是通过ADC读取GP2Y0E03输出的模拟信号,并将其转换为距离值进行输出。在这个例程中,通过USART将距离值输出到电脑终端。
阅读全文