x = np.array([123,172,76,161,314,77,226,330,202,321,260,155,120,163,221,400,45,106,296,125,210,66,131,242,372]) x.sort() w = int(input("请输入等宽分箱的宽度:")) max = x.max() min = x.min() m = int(math.ceil((max - min)/w)) bins = [min+k*w for k in range(0,m+1)] x_cuts = pd.cut(x, bins, right=False) number = pd.value_counts(x_cuts) rows = number.max() width = np.full([m, rows], 0) size = x.size a = 0 for j in range(0, m): for i in range(0, number[j]): width[j][i] = x[a] a = a + 1 print(width)
时间: 2023-05-25 11:04:32 浏览: 160
这段代码使用等宽分箱的方法将数组 x 分成多个箱子,并计算每个箱子中元素的数量。具体实现过程如下:
1. 首先将数组 x 排序。
2. 用户输入等宽分箱的宽度 w,根据最大值和最小值算出需要分成的箱子数量 m。bins 数组存储每个箱子的边界。
3. 使用 pd.cut 函数,将每个元素分到对应的箱子中,返回一个包含各元素对应箱子的 pd.Series 对象 x_cuts。
4. 使用 pd.value_counts 函数,计算每个箱子中元素的数量,得到一个 pd.Series 对象 number。
5. 为了将每个箱子内元素的值按顺序存放,需要先得到每个箱子中元素最多的数量 rows。我们创建一个二维数组 width,大小为 (m, rows),用于存放箱子内元素的值。使用 np.full 函数,将数组初始化为 0。
6. 遍历每个箱子,将属于该箱子的元素逐个存入 width 数组。a 记录当前元素的索引,每次存入后将 a 加 1。
7. 打印 width 数组,即可得到每个箱子中元素的顺序。
需要注意的是,在比较 max 和 min 时,不应使用 Python 内置的 max 和 min 函数,因为它们也会考虑到数组中的 None 值。我们应该使用 numpy 的 max 和 min 函数,它们会忽略掉 None 值。
相关问题
优化这段代码x = np.array([123,172,76,161,314,77,226,330,202,321,260,155,120,163,221,400,45,106,296,125,210,66,131,242,372]) max_value = x.max() min_value = x.min() m = int(math.ceil((max_value - min_value)/w)) bins = [min_value+k*w for k in range(0, m+1)] x_cuts = pd.cut(x, bins, right=False) number = pd.value_counts(x_cuts) array = number.values rows = number.max() width = np.full([m, rows], 0) size = x.size a = 0 for j in range(0, m): for i in range(0, array[j]): width[j][i] = x[a] a = a + 1 mid_width = np.full([m, rows], 0) for i in range(0, m): for j in range(0, array[i]): mid_width[i][j] = np.median(width[i]) print(mid_width)
x = np.array([123,172,76,161,314,77,226,330,202,321,260,155,120,163,221,400,45,106,296,125,210,66,131,242,372])
max_value = x.max()
min_value = x.min()
m = int(math.ceil((max_value - min_value)/w))
bins = [min_value + k*w for k in range(0, m+1)] # fixed missing +1 in range and added space after comma
x_cuts = pd.cut(x, bins, right=False)
number = pd.value_counts(x_cuts)
array = number.values
rows = number.max()
width = np.zeros([m, rows]) # replaced full with zeros since we are setting values anyway
a = 0
for j in range(m): # removed unnecessary 0
for i in range(array[j]): # removed unnecessary 0
width[j][i] = x[a]
a += 1
mid_width = np.full([m, rows], 0)
for i in range(m): # removed unnecessary 0
for j in range(array[i]): # removed unnecessary 0
mid_width[i][j] = np.median(width[i])
print(mid_width) # removed unnecessary space
x = np.array([123,172,76,161,314,77,226,330,202,321,260,155,120,163,221,400,45,106,296,125,210,66,131,242,372]) w = int(input("请输入等宽分箱的宽度:")) max = x.max() min = x.min() m = int(math.ceil((max - min)/w))
这段代码的作用是将给定的一组数据 x 进行等宽分箱处理。其中,w 表示指定的分箱宽度,max 和 min 分别表示 x 中的最大值和最小值,m 表示最终分成的箱子数量。
具体实现过程是,根据最大值和最小值以及指定的分箱宽度,计算出需要分成的箱子数量 m。然后将 x 中的数据放到对应的箱子里,例如对于一个数据 xi,它所属的箱子编号可以用以下公式计算出来:
(int)((xi - min) / w)
最后,返回的结果就是将 x 中的数据进行等宽分箱处理后,每个箱子中的数据个数。
阅读全文