用mmd迁移样本pytorch
时间: 2023-06-30 22:09:16 浏览: 175
MMD(最大均值差异)是用于度量两个概率分布之间距离的一种方法。在深度学习中,我们可以使用MMD来比较两个数据集之间的差异。如果我们想在PyTorch中使用MMD,可以通过以下步骤实现:
1. 安装必要的库
```python
!pip install torch
!pip install numpy
!pip install scipy
```
2. 导入库
```python
import torch
import numpy as np
from scipy.spatial.distance import cdist
```
3. 定义计算高斯核的函数
```python
def gaussian_kernel(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
'''
计算MMD中的高斯核
:param source: 源数据
:param target: 目标数据
:param kernel_mul: 高斯核初始值
:param kernel_num: 高斯核个数
:param fix_sigma: 是否固定高斯核值
:return:
'''
n_samples = int(source.size()[0])+int(target.size()[0])
total = torch.cat([source, target], dim=0)
total0 = total.unsqueeze(0).expand(
int(total.size(0)), int(total.size(0)), int(total.size(1)))
total1 = total.unsqueeze(1).expand(
int(total.size(0)), int(total.size(0)), int(total.size(1)))
L2_distance = ((total0-total1)**2).sum(2)
if fix_sigma:
bandwidth = fix_sigma
else:
bandwidth = torch.sum(L2_distance.detach()) / (n_samples**2-n_samples)
bandwidth /= kernel_mul**(kernel_num//2)
bandwidth_list = [bandwidth * (kernel_mul**i) for i in range(kernel_num)]
kernel_val = [torch.exp(-L2_distance / bandwidth_temp) for bandwidth_temp in bandwidth_list]
return sum(kernel_val)#/len(kernel_val)
```
4. 定义计算MMD的函数
```python
def MMD(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
'''
计算最大均值差异
:param source: 源数据
:param target: 目标数据
:param kernel_mul: 高斯核初始值
:param kernel_num: 高斯核个数
:param fix_sigma: 是否固定高斯核值
:return:
'''
batch_size = int(source.size()[0])
kernels = gaussian_kernel(source, target,
kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)
loss = 0
for i in range(batch_size):
s1, s2 = i, (i+1) % batch_size
t1, t2 = s1+batch_size, s2+batch_size
loss += kernels[s1, s2]+kernels[t1, t2]
loss -= kernels[s1, t2]+kernels[s2, t1]
return loss/(batch_size*2)
```
5. 加载数据集并计算MMD
```python
# 加载数据集
source_data = np.load('source_data.npy')
target_data = np.load('target_data.npy')
# 转为Tensor
source_data = torch.tensor(source_data).float()
target_data = torch.tensor(target_data).float()
# 计算MMD
mmd_loss = MMD(source_data, target_data)
```
这就是在PyTorch中使用MMD的基本步骤。需要注意的是,在实际应用中,我们需要根据具体情况来设置高斯核参数和核数等超参数。
阅读全文