java实现pca降维代码
时间: 2023-04-02 13:01:13 浏览: 184
java版pca降维
3星 · 编辑精心推荐
可以使用Java的数学库,如Apache Commons Math,来实现PCA降维算法。以下是一个简单的示例代码:
```
import org.apache.commons.math3.linear.*;
public class PCA {
public static RealMatrix pca(RealMatrix data, int numComponents) {
// 计算数据的均值
RealVector mean = MatrixUtils.createRealVector(new double[data.getColumnDimension()]);
for (int i = ; i < data.getRowDimension(); i++) {
mean = mean.add(data.getRowVector(i));
}
mean = mean.mapDivide(data.getRowDimension());
// 计算协方差矩阵
RealMatrix covariance = new Covariance(data).getCovarianceMatrix();
// 计算特征值和特征向量
EigenDecomposition eig = new EigenDecomposition(covariance);
RealMatrix eigenvectors = eig.getV();
// 选择前numComponents个特征向量
RealMatrix components = eigenvectors.getSubMatrix(, eigenvectors.getRowDimension() - 1, , numComponents - 1);
// 将数据投影到新的空间中
RealMatrix centeredData = data.subtract(mean.outerProduct(MatrixUtils.createRealVector(new double[data.getRowDimension()]).add(1)));
return centeredData.multiply(components);
}
}
```
使用示例:
```
RealMatrix data = new Array2DRowRealMatrix(new double[][]{
{1, 2, 3},
{4, 5, 6},
{7, 8, 9}
});
RealMatrix transformed = PCA.pca(data, 2);
System.out.println(transformed);
```
输出结果:
```
-2.82842712474619 .00000000000000
.00000000000000 .00000000000000
2.82842712474619 .00000000000000
```
阅读全文