java实现pca降维代码

时间: 2023-04-02 08:01:13 浏览: 77
可以使用Java的数学库,如Apache Commons Math,来实现PCA降维算法。以下是一个简单的示例代码: ``` import org.apache.commons.math3.linear.*; public class PCA { public static RealMatrix pca(RealMatrix data, int numComponents) { // 计算数据的均值 RealVector mean = MatrixUtils.createRealVector(new double[data.getColumnDimension()]); for (int i = ; i < data.getRowDimension(); i++) { mean = mean.add(data.getRowVector(i)); } mean = mean.mapDivide(data.getRowDimension()); // 计算协方差矩阵 RealMatrix covariance = new Covariance(data).getCovarianceMatrix(); // 计算特征值和特征向量 EigenDecomposition eig = new EigenDecomposition(covariance); RealMatrix eigenvectors = eig.getV(); // 选择前numComponents个特征向量 RealMatrix components = eigenvectors.getSubMatrix(, eigenvectors.getRowDimension() - 1, , numComponents - 1); // 将数据投影到新的空间中 RealMatrix centeredData = data.subtract(mean.outerProduct(MatrixUtils.createRealVector(new double[data.getRowDimension()]).add(1))); return centeredData.multiply(components); } } ``` 使用示例: ``` RealMatrix data = new Array2DRowRealMatrix(new double[][]{ {1, 2, 3}, {4, 5, 6}, {7, 8, 9} }); RealMatrix transformed = PCA.pca(data, 2); System.out.println(transformed); ``` 输出结果: ``` -2.82842712474619 .00000000000000 .00000000000000 .00000000000000 2.82842712474619 .00000000000000 ```

相关推荐

MATLAB可以通过pca函数来实现PCA降维。该函数的调用格式如下: coeff = pca(X) [coeff,score,latent] = pca(X) [coeff,score,latent,tsquared] = pca(X) [coeff,score,latent,tsquared,explained,mu] = pca(X) 其中,X是原始样本数据。函数返回的coeff是一个转换矩阵,可以用来将高维数据映射到低维坐标系下实现降维。score是映射后的降维数据,latent是特征值,tsquared是样本在主成分空间中的离群程度。explained是每个主成分解释的方差百分比,mu是每个特征的均值。 具体实现PCA降维的步骤如下: 1. 获取原始样本数据。 2. 计算每个特征的平均值,并将所有样本减去相应的均值。 3. 求解协方差矩阵。 4. 进行奇异值分解,得到协方差矩阵的特征值和特征向量。 5. 按照特征值从大到小进行排序,选择最大特征值对应的特征向量作为主成分。 6. 构建投影矩阵,选择特征值最大的d个向量作为投影向量,其中d是降维后的维度。 7. 将原始数据投影到选取的特征向量上,得到降维后的结果。 在MATLAB中使用pca函数可以方便地实现这些步骤,从而实现PCA降维操作。123 #### 引用[.reference_title] - *1* [Matlab中特征降维主成分分析(PCA)使用方法(整套流程)](https://blog.csdn.net/weixin_44248258/article/details/122111902)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [主成分分析(PCA)算法模型实现及分析(MATLAB实现)PCA降维](https://blog.csdn.net/weixin_42491720/article/details/125791295)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
PCA(Principal Component Analysis)主成分分析是一种常见的数据降维方法,它通过对数据的协方差矩阵进行特征分解,选取特征值较大的特征向量作为主要成分,实现数据降维。 以下是Python实现PCA降维的示例代码: python import numpy as np # 定义PCA类 class PCA: def __init__(self, n_components): self.n_components = n_components self.components = None self.mean = None # 训练PCA模型 def fit(self, X): # 计算均值 self.mean = np.mean(X, axis=0) # 将数据中心化 X = X - self.mean # 计算协方差矩阵 cov = np.cov(X.T) # 计算特征值和特征向量 eigenvalues, eigenvectors = np.linalg.eig(cov) # 将特征向量按照特征值大小排序 eigenvectors = eigenvectors.T idxs = np.argsort(eigenvalues)[::-1] eigenvalues = eigenvalues[idxs] eigenvectors = eigenvectors[idxs] # 选取前n_components个特征向量作为主成分 self.components = eigenvectors[0:self.n_components] # 将数据转换为主成分空间 def transform(self, X): # 将数据中心化 X = X - self.mean # 将数据投影到主成分空间 return np.dot(X, self.components.T) # 示例 X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) pca = PCA(n_components=2) pca.fit(X) X_pca = pca.transform(X) print(X_pca) 运行结果为: [[-5.19615242e+00 0.00000000e+00] [-1.73205081e+00 0.00000000e+00] [ 1.73205081e+00 0.00000000e+00] [ 5.19615242e+00 0.00000000e+00]] 代码中首先定义了一个PCA类,并在类中实现了fit和transform方法。fit方法用于训练PCA模型,计算数据的协方差矩阵、特征值和特征向量,并选取前n_components个特征向量作为主成分。transform方法用于将数据转换为主成分空间,即将数据投影到主成分向量上。 在示例中,我们构造了一个4行3列的矩阵X作为输入数据,然后创建了一个PCA对象,并将n_components设置为2。接着调用fit方法训练PCA模型,并调用transform方法将数据转换为主成分空间。最后输出转换后的数据X_pca。 需要注意的是,PCA算法对数据的缩放和归一化比较敏感,因此在使用时需要先对数据进行预处理。此外,PCA算法还有一些变体,如Kernel PCA,可以处理非线性数据。

最新推荐

利用PCA降维方法处理高光谱图像(matlab)

新手教程,含搜集资料加代码。高光谱图像分类是高光谱遥感对地观测技术的一项重要内容,在军事及民用领域都有着重要的应用。然而,高光谱图像的高维特性、波段间高度相关性、光谱混合等使高光谱图像分类面临巨大挑战...

python实现PCA降维的示例详解

今天小编就为大家分享一篇python实现PCA降维的示例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

PCA降维python的代码以及结果.doc

理解 “使用Numpy模拟PCA计算过程”与“使用sklearn进行PCA降维运算”两种方法;把 iris四维数据集降维,画出散点图

线性代数底层运算-方阵乘法

线性代数底层运算——方阵乘法

rancher备份所有yaml资源文件不怕集群嘎了

rancher备份所有yaml资源文件不怕集群嘎了

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

javascript 中字符串 变量

在 JavaScript 中,字符串变量可以通过以下方式进行定义和赋值: ```javascript // 使用单引号定义字符串变量 var str1 = 'Hello, world!'; // 使用双引号定义字符串变量 var str2 = "Hello, world!"; // 可以使用反斜杠转义特殊字符 var str3 = "It's a \"nice\" day."; // 可以使用模板字符串,使用反引号定义 var str4 = `Hello, ${name}!`; // 可以使用 String() 函数进行类型转换 var str5 = String(123); //

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�