void SampleApp_MessageMSGCB( afIncomingMSGPacket_t *pkt ) { uint16 flashTime; switch ( pkt->clusterId ) { case SAMPLEAPP_P2P_CLUSTERID: HalUARTWrite(0, "ED-TX-T&H:", 10); //提示接收到数据 HalUARTWrite(0, pkt->cmd.Data, pkt->cmd.DataLength); //输出接收到的数据 HalUARTWrite(0, "\n", 1); // 回车换行 break; case SAMPLEAPP_PERIODIC_CLUSTERID: break; case SAMPLEAPP_FLASH_CLUSTERID: flashTime = BUILD_UINT16(pkt->cmd.Data[1], pkt->cmd.Data[2] ); HalLedBlink( HAL_LED_4, 4, 50, (flashTime / 4) ); break; } }解释这段代码

时间: 2023-06-16 08:05:14 浏览: 214
这段代码是一个函数的实现,该函数用于处理接收到的 ZigBee 消息。具体来说,它会根据消息的簇 ID(cluster ID)来分别处理不同类型的消息。 如果接收到的消息的簇 ID 是 SAMPLEAPP_P2P_CLUSTERID,即点对点通信的消息,那么函数会将“ED-TX-T&H:”字符串输出到串口,并将接收到的数据(pkt->cmd.Data)输出到串口,最后还会输出一个回车换行符。 如果接收到的消息的簇 ID 是 SAMPLEAPP_PERIODIC_CLUSTERID,即定期上报的消息,那么函数不做任何处理。 如果接收到的消息的簇 ID 是 SAMPLEAPP_FLASH_CLUSTERID,即闪烁 LED 的消息,那么函数会从消息中取出 LED 闪烁的时间 flashTime,并调用 HalLedBlink 函数让 LED 以一定的频率闪烁。具体来说,LED 会闪烁 4 次,每次闪烁的时间为 50ms,总共闪烁的时间为 flashTime / 4。
相关问题

zigbee协议栈SampleApp_MessageMSGCB( afIncomingMSGPacket_t *pkt )函数

`SampleApp_MessageMSGCB()` 是 Zigbee 协议栈中的一个回调函数,用于处理接收到的消息包。它的参数 `pkt` 是一个指向 `afIncomingMSGPacket_t` 结构体的指针,该结构体定义了接收到的消息包的相关信息,如源地址、目标地址、集群 ID、消息类型等。 在 `SampleApp_MessageMSGCB()` 函数中,你可以根据接收到的消息类型和集群 ID 来判断所接收到的消息属于哪种类型的消息,并进行相应的处理。可以根据需要解析消息中的数据,并根据业务逻辑进行相应的操作。该函数的具体实现根据不同的应用场景而有所不同。 需要注意的是,在 Zigbee 应用开发中,`SampleApp_MessageMSGCB()` 函数通常是由 Zigbee 应用开发者自行实现的,用于处理特定的应用需求。

编写SampleApp_MessageMSGCB数据消息队列处理的回调函数, Z-Stack的API函数直接传参数即可。 #define HAL_LED_2 0x02 void SampleApp_MessageMSGCB( afIncomingMSGPacket_t *pkt ) { ____________________________; //声明并初始化7个字节的缓冲区 switch ( pkt->clusterId ) { case SAMPLEAPP_PERIODIC_CLUSTERID: ____________________________ //将接收到的数据复制到缓冲区 //判断是不是NEWLab这6个字符 if( ____________________________ ) { //若是NEWLab这6个字符,使LED2闪烁 ____________________________ } else { //若不是NEWLab这6个字符,则点亮LED2 ____________________________ } break; default: break; } }

以下是SampleApp_MessageMSGCB函数的修改版,用于处理数据消息队列中的数据包,并根据接收到的数据来控制LED2: ```c void SampleApp_MessageMSGCB( afIncomingMSGPacket_t *pkt ) { uint8 buffer[7] = {0}; // Declare and initialize buffer with 7 bytes switch ( pkt->clusterId ) { case SAMPLEAPP_PERIODIC_CLUSTERID: // Copy received data to buffer memcpy(buffer, pkt->cmd.Data, pkt->cmd.DataLength); // Check if the first 6 bytes are "NEWLab" if (memcmp(buffer, "NEWLab", 6) == 0) { // If the first 6 bytes are "NEWLab", make LED2 blink HalLedBlink(HAL_LED_2, 4, 50, 500); } else { // If the first 6 bytes are not "NEWLab", turn on LED2 HalLedSet(HAL_LED_2, HAL_LED_MODE_ON); } break; default: break; } } ``` 请注意,此修改版本的代码需要在其他部分定义SAMPLEAPP_PERIODIC_CLUSTERID,并需要使用HalLedBlink和HalLedSet函数来控制LED2的状态。

相关推荐

在划线处完成SampleApp工程应用层初始化函数代码的注释(用中文简述各段代码)。 void SampleApp_Init( uint8 task_id ) { SampleApp_TaskID = task_id; SampleApp_NwkState = DEV_INIT; SampleApp_TransID = 0; // #if defined ( BUILD_ALL_DEVICES ) // The "Demo" target is setup to have BUILD_ALL_DEVICES and HOLD_AUTO_START // We are looking at a jumper (defined in SampleAppHw.c) to be jumpered // together - if they are - we will start up a coordinator. Otherwise, the device will start as a router. if ( readCoordinatorJumper() ) zgDeviceLogicalType = ZG_DEVICETYPE_COORDINATOR; else zgDeviceLogicalType = ZG_DEVICETYPE_ROUTER; #endif // BUILD_ALL_DEVICES // #if defined ( HOLD_AUTO_START ) // HOLD_AUTO_START is a compile option that will surpress ZDApp // from starting the device and wait for the application to start the device. ZDOInitDevice(0); #endif // SampleApp_Periodic_DstAddr.addrMode = (afAddrMode_t)AddrBroadcast; SampleApp_Periodic_DstAddr.endPoint = SAMPLEAPP_ENDPOINT; SampleApp_Periodic_DstAddr.addr.shortAddr = 0xFFFF; // SampleApp_Flash_DstAddr.addrMode = (afAddrMode_t)afAddrGroup; SampleApp_Flash_DstAddr.endPoint = SAMPLEAPP_ENDPOINT; SampleApp_Flash_DstAddr.addr.shortAddr = SAMPLEAPP_FLASH_GROUP; // SampleApp_epDesc.endPoint = SAMPLEAPP_ENDPOINT; SampleApp_epDesc.task_id = &SampleApp_TaskID; SampleApp_epDesc.simpleDesc=(SimpleDescriptionFormat_t *)&SampleApp_SimpleDesc; SampleApp_epDesc.latencyReq = noLatencyReqs; // Register the endpoint description with the AF afRegister( &SampleApp_epDesc ); // Register for all key events - This app will handle all key events RegisterForKeys( SampleApp_TaskID ); // By default, all devices start out in Group 1 SampleApp_Group.ID = 0x0001; osal_memcpy( SampleApp_Group.name, "Group 1", 7 ); aps_AddGroup( SAMPLEAPP_ENDPOINT, &SampleApp_Group ); }

最新推荐

recommend-type

Z-stack串口的DMA模式

Z-Stack串口的DMA模式是指在Z-Stack-CC2530-2.3.0-1.4.0版本下SampleApp工程中,串口的两种模式之一的DMA模式。这种模式在网络上资源比较少,因此需要详细地解释其实现过程。 首先,在串口的初始化中,我们需要修改...
recommend-type

NexusSetup.exe是Nexus设备设置程序的执行文件

这款Windows Dock栏工具解决了窗口遮挡问题,支持将窗口最小化至Dock栏,相比mydock稳定性更好,而相比bitdock体积更小,是一款适中的优秀选择,值得推荐。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

某航天所智能制造实施方案(交付版).pptx

某航天所智能制造实施方案(交付版).pptx
recommend-type

opencv运动目标检测与跟踪源代码运动目标的检测与跟踪 ,有详细源代码。.rar

opencv运动目标检测与跟踪源代码运动目标的检测与跟踪 ,有详细源代码。
recommend-type

AI视觉智慧城管解决方案.pptx

AI视觉智慧城管解决方案.pptx
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。