如何用C#写一个,关于平面二维坐标进行聚类的方法,主要按坐标的x值进行聚类,阈值由用户指定最小和最大值,程序自动根据坐标x值关系进行聚类
时间: 2024-03-26 14:35:14 浏览: 100
可以使用K-Means算法进行平面二维坐标的聚类,以下是C#实现的示例代码:
```csharp
using System;
using System.Collections.Generic;
class Program
{
static void Main(string[] args)
{
// 生成一组二维坐标点
List<Point> points = GeneratePoints();
// 聚类阈值最小值
double minThreshold = 2.0;
// 聚类阈值最大值
double maxThreshold = 4.0;
// 进行聚类
List<List<Point>> clusters = KMeans(points, minThreshold, maxThreshold);
// 输出聚类结果
for (int i = 0; i < clusters.Count; i++)
{
Console.WriteLine($"Cluster {i + 1}:");
foreach (Point point in clusters[i])
{
Console.WriteLine($"({point.X}, {point.Y})");
}
}
}
// 生成一组二维坐标点
static List<Point> GeneratePoints()
{
List<Point> points = new List<Point>();
points.Add(new Point(1, 2));
points.Add(new Point(2, 4));
points.Add(new Point(3, 6));
points.Add(new Point(4, 8));
points.Add(new Point(5, 10));
points.Add(new Point(6, 12));
points.Add(new Point(7, 14));
points.Add(new Point(8, 16));
points.Add(new Point(9, 18));
points.Add(new Point(10, 20));
return points;
}
// K-Means算法进行聚类
static List<List<Point>> KMeans(List<Point> points, double minThreshold, double maxThreshold)
{
List<Point> centroids = new List<Point>();
List<List<Point>> clusters = new List<List<Point>>();
// 初始化聚类中心
centroids.Add(points[0]);
centroids.Add(points[points.Count - 1]);
// 迭代聚类
while (true)
{
// 初始化聚类簇
clusters.Clear();
for (int i = 0; i < centroids.Count; i++)
{
clusters.Add(new List<Point>());
}
// 将每个点分配到最近的聚类中心所在的簇中
foreach (Point point in points)
{
int clusterIndex = 0;
double minDistance = double.MaxValue;
for (int i = 0; i < centroids.Count; i++)
{
double distance = Math.Abs(point.X - centroids[i].X);
if (distance < minDistance)
{
clusterIndex = i;
minDistance = distance;
}
}
clusters[clusterIndex].Add(point);
}
// 更新聚类中心
List<Point> newCentroids = new List<Point>();
for (int i = 0; i < clusters.Count; i++)
{
double sumX = 0;
int count = 0;
foreach (Point point in clusters[i])
{
sumX += point.X;
count++;
}
if (count > 0)
{
double meanX = sumX / count;
newCentroids.Add(new Point(meanX, 0));
}
}
// 判断是否达到聚类结束条件
bool isFinished = true;
for (int i = 0; i < centroids.Count; i++)
{
double distance = Math.Abs(centroids[i].X - newCentroids[i].X);
if (distance < minThreshold || distance > maxThreshold)
{
isFinished = false;
break;
}
}
if (isFinished)
{
break;
}
centroids = newCentroids;
}
return clusters;
}
}
// 二维坐标点
class Point
{
public double X { get; set; }
public double Y { get; set; }
public Point(double x, double y)
{
X = x;
Y = y;
}
}
```
该示例代码中使用K-Means算法进行聚类,根据坐标的x值进行聚类,用户指定的聚类阈值最小值和最大值用于判断聚类是否达到结束条件。
阅读全文