这段代码有什么错误def task1(): def task2(): print("Task 2 is running") task2() print("Task 1 is running")
时间: 2024-01-26 08:04:43 浏览: 141
这段代码没有语法错误,但是在调用 `task1()` 函数时会输出 "Task 2 is running" 和 "Task 1 is running",因为在 `task1()` 函数中调用了 `task2()` 函数。如果你只想输出 "Task 1 is running",可以将 `task2()` 函数的调用移到 `task1()` 函数之外。例如:
```
def task2():
print("Task 2 is running")
def task1():
print("Task 1 is running")
task1()
```
这样调用 `task1()` 函数时会输出 "Task 1 is running",而不会输出 "Task 2 is running"。
相关问题
程序无法执行,修改class Processor(): def __init__(self): self._inspect_step = int(cfg.get('PROCESS', 'INSPECT_STEP')) def capture_img(self): global aco aco = aco + 1 self._cam.stream_on() raw_image = self._cam.data_stream[0].get_image() if raw_image is None: print("Getting image failed.\n") return None print("Frame ID: {} Height: {} Width: {} Count: {}\n" .format(raw_image.get_frame_id(), raw_image.get_height(), raw_image.get_width(), aco - 2)) numpy_image = raw_image.get_numpy_array() if numpy_image is None: return None img = Image.fromarray(numpy_image, 'L') if self._issave: picfile = '{}/{}.bmp'.format(self._picpath, self._piccount) self._piccount = self._piccount + 1 img.save(picfile) if self._isshow: w, h = img.size scale = min(1.0 * IMG_RESIZE_W / w, 1.0 * IMG_RESIZE_H / h) self._img = ImageTk.PhotoImage(image=img.resize((int(w * scale), int(h * scale)), Image.ANTIALIAS)) self._show_cb(self._img) self._cam.stream_off() return img def process_img(self, img): return PROC_OK def inspect(self): print("process2") time.sleep(1) def rotate(self): count = 0 aco = 0 self.threadsignal = 0 while self._running: v = self._dgl.qpin(ROT) if len(v) > 0: count = count + sum(v) if count > self._inspect_step: aco += 1 img = self.capture_img() count = count - self._inspect_step if __name__ == '__main__': task2 = multiprocessing.Process(target=self.inspect) task2.start() task1 = multiprocessing.Process(target=self.rotate) task1.start()
在这段代码中,有几个问题可以被改进。首先,类 `Processor` 中的全局变量 `aco` 可能会导致并发问题,在多进程环境下应该避免使用全局变量。其次,代码中出现了 `time.sleep()`,这会阻塞当前进程并造成性能瓶颈,应该尽量避免使用。
以下是可能的改进方案:
1. 将 `aco` 变量改为实例变量,避免多进程之间的并发问题。
2. 使用 `Queue` 或其他进程间通信机制替代全局变量,避免多进程之间的竞争。
3. 将 `time.sleep()` 改为使用定时器或者事件,避免阻塞进程并提高程序的性能。
4. 在多进程环境中,使用 `if __name__ == '__main__':` 来避免创建子进程时出现递归调用的问题。
以下是修改后的代码示例:
```python
import multiprocessing
from queue import Queue
import time
class Processor():
def __init__(self):
self._inspect_step = int(cfg.get('PROCESS', 'INSPECT_STEP'))
self._aco = 0
self._queue = Queue()
def capture_img(self):
self._aco += 1
self._cam.stream_on()
raw_image = self._cam.data_stream[0].get_image()
if raw_image is None:
print("Getting image failed.\n")
return None
print("Frame ID: {} Height: {} Width: {} Count: {}\n".format(raw_image.get_frame_id(), raw_image.get_height(), raw_image.get_width(), self._aco - 2))
numpy_image = raw_image.get_numpy_array()
if numpy_image is None:
return None
img = Image.fromarray(numpy_image, 'L')
if self._issave:
picfile = '{}/{}.bmp'.format(self._picpath, self._piccount)
self._piccount = self._piccount + 1
img.save(picfile)
if self._isshow:
w, h = img.size
scale = min(1.0 * IMG_RESIZE_W / w, 1.0 * IMG_RESIZE_H / h)
self._img = ImageTk.PhotoImage(image=img.resize((int(w * scale), int(h * scale)), Image.ANTIALIAS))
self._show_cb(self._img)
self._cam.stream_off()
return img
def process_img(self, img):
return PROC_OK
def inspect(self):
print("process2")
while self._running:
time.sleep(1)
self._queue.put("task")
def rotate(self):
count = 0
while self._running:
v = self._dgl.qpin(ROT)
if len(v) > 0:
count = count + sum(v)
if count > self._inspect_step:
self._aco += 1
img = self.capture_img()
count = count - self._inspect_step
try:
task = self._queue.get(block=False)
if task == "task":
print("processing task")
except:
pass
if __name__ == '__main__':
p = Processor()
p._running = True
task2 = multiprocessing.Process(target=p.inspect)
task2.start()
task1 = multiprocessing.Process(target=p.rotate)
task1.start()
```
请注意,这里只是对原始代码的一些修改建议,并不能保证这样的修改能够完全解决问题。在实际环境中,还需要根据具体情况进行调整和优化。
给下面的代码写上注释from invoke import task @task def build_docs(context): context.run("aizynthcli -h > ./docs/cli_help.txt") context.run("sphinx-apidoc -o ./docs ./aizynthfinder") context.run("sphinx-build -M html ./docs ./docs/build") @task def full_tests(context): cmd = ( "pytest --black --mccabe " "--cov aizynthfinder --cov-branch --cov-report html:coverage --cov-report xml " "tests/" ) context.run(cmd) @task def run_mypy(context): context.run("mypy --ignore-missing-imports --show-error-codes aizynthfinder") @task def run_linting(context): print("Running mypy...") context.run("mypy --install-types", pty=True) context.run( "mypy --ignore-missing-imports --show-error-codes --implicit-optional aizynthfinder" ) print("Running pylint...") context.run("pylint aizynthfinder")
下面是给代码添加注释的示例:
```python
from invoke import task
@task
def build_docs(context):
# 生成命令行帮助文档
context.run("aizynthcli -h > ./docs/cli_help.txt")
# 生成API文档
context.run("sphinx-apidoc -o ./docs ./aizynthfinder")
# 构建文档
context.run("sphinx-build -M html ./docs ./docs/build")
@task
def full_tests(context):
# 运行完整测试套件,包括代码格式检查和代码覆盖率检查
cmd = (
"pytest --black --mccabe "
"--cov aizynthfinder --cov-branch --cov-report html:coverage --cov-report xml "
"tests/"
)
context.run(cmd)
@task
def run_mypy(context):
# 运行mypy类型检查,忽略缺失的导入和显示错误码
context.run("mypy --ignore-missing-imports --show-error-codes aizynthfinder")
@task
def run_linting(context):
print("Running mypy...")
# 运行mypy类型检查,安装类型信息并显示错误码
context.run("mypy --install-types", pty=True)
# 运行mypy类型检查,忽略缺失的导入、显示错误码和隐式可选类型
context.run(
"mypy --ignore-missing-imports --show-error-codes --implicit-optional aizynthfinder"
)
print("Running pylint...")
# 运行pylint代码静态分析工具
context.run("pylint aizynthfinder")
```
这些注释描述了每个任务函数的功能和用途,以及在每个任务函数中执行的具体操作。这样有助于提高代码的可读性和可理解性,并使其他开发人员更容易理解代码的意图和目的。
阅读全文