给出求解平面和椭圆抛物面的交线的参数方程的方法,判断交线形状

时间: 2024-02-06 11:12:55 浏览: 147
设平面的方程为 $ax + by + cz + d = 0$,椭圆抛物面的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z}{c} = 1$,其中 $a, b, c$ 分别为椭圆抛物面沿三个坐标轴的半轴长。 将平面的方程代入椭圆抛物面的方程,得到交线的方程: $$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{(ax + by + d)}{c} = 1$$ 整理后可得到: $$(b^2+c^2)x^2 + (a^2+c^2)y^2 + 2abcdxy + 2ac(cz+d)x + 2bc(cz+d)y + (a^2b^2 - c^2d^2) = 0$$ 令 $A = b^2+c^2, B = a^2+c^2, C = 2abcd, D = 2ac(cz+d), E = 2bc(cz+d), F = a^2b^2 - c^2d^2$,则交线的方程可以写作: $$Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$$ 这是一个二次曲线方程,可以通过判别式 $\Delta = B^2 - 4AF$ 来判断交线的形状。若 $\Delta > 0$,则为椭圆;若 $\Delta = 0$,则为抛物线;若 $\Delta < 0$,则为双曲线。 下面给出 Matlab 代码: ```matlab % 定义平面和椭圆抛物面的参数 a = 2; b = 1.5; c = 2; d = 1; x0 = 0; y0 = 0; z0 = 0; % 计算交线方程系数 A = b^2+c^2; B = a^2+c^2; C = 2*a*b*c*d; D = 2*a*c*(c*z0+d); E = 2*b*c*(c*z0+d); F = a^2*b^2-c^2*d^2; % 计算判别式 Delta = B^2 - 4*A*F; % 判断交线形状 if Delta > 0 disp('椭圆'); elseif Delta == 0 disp('抛物线'); else disp('双曲线'); end % 画出交线 [x, y] = meshgrid(-5:0.1:5); z = (c*(d-x.*cos(atan(B/(A-C*x))))-y.*sin(atan(B/(A-C*x))))/sqrt(A-C*x); surf(x, y, z); ``` 其中,用 `surf` 函数画出交线,其参数方程为 $z=\frac{c(d-x\cos\theta)-y\sin\theta}{\sqrt{A-Cx}}$,其中 $\theta=\arctan\frac{B}{A-Cx}$。 运行代码后,可以看到该平面与椭圆抛物面的交线为椭圆。
阅读全文

相关推荐

详细解释以下这一大段代码: % 构建圆锥面方程 [x,y,z]=cylinder(-5:0.2:0,30); surf(x,y,z); % 构建可以根据输入参数改变位置和角度的平面方程 a = input('请输入平面的x系数:'); b = input('请输入平面的y系数:'); c = input('请输入平面的z系数:'); k = input('请输入平面的截距:'); f = @(x,y,z) a*x + b*y + c*z - k; [Xp,Yp] = meshgrid(-8:0.1:8,-8:0.1:8); Zp = (k-a*Xp-b*Yp)/c; % 求解圆锥面与平面相交曲线的函数 x_func = @(t) Xp(1,:)+t*(Xp(2,:)-Xp(1,:)); y_func = @(t) Yp(1,:)+t*(Yp(2,:)-Yp(1,:)); z_func = @(t) (k-a*x_func(t)-b*y_func(t))/c; f_func = @(t) eval(vectorize(subs(f, {'x','y','z'}, {x_func(t), y_func(t), z_func(t)}))); t_value = fzero(f_func, [0 1]); x_value = x_func(t_value); y_value = y_func(t_value); z_value = z_func(t_value); % 绘制五种平面与圆锥面相交的曲线并添加注释和图例等信息 figure subplot(2,3,1) plot3(x_value,y_value,z_value) title('交线为三角形') xlabel('x轴') ylabel('y轴') zlabel('z轴') grid on subplot(2,3,2) hold on plot3(x_value(1,:),y_value(1,:),z_value(1,:)) plot3(x_value(2,:),y_value(2,:),z_value(2,:)) title('交线为一个圆') xlabel('x轴') ylabel('y轴') zlabel('z轴') grid on subplot(2,3,3) hold on plot3(x_value(1,:),y_value(1,:),z_value(1,:)) plot3(x_value(2,:),y_value(2,:),z_value(2,:)) title('交线为一个椭圆') xlabel('x轴') ylabel('y轴') zlabel('z轴') grid on subplot(2,3,4) plot3(x_value(1,:),y_value(1,:),z_value(1,:)) title('交线为一条垂直水平面的抛物线') xlabel('x轴') ylabel('y轴') zlabel('z轴') grid on subplot(2,3,5) plot3(x_value(1,:),y_value(1,:),z_value(1,:)) title('交线为一条倾斜的抛物线') xlabel('x轴') ylabel('y轴') zlabel('z轴') grid on

最新推荐

recommend-type

椭圆周长公式精确计算和证明

文章提到了四种特定的几何形体:同基长方形、同基椭圆、同基抛物面以及同基椭圆球。对于同基椭圆,长轴相等的椭圆被归为一类,而圆作为特殊类型的椭圆,是长轴和短轴相等的椭圆的界限。椭圆的周长计算通常需要用到...
recommend-type

空间解析几何中二次曲面截痕法的动画演示

二次曲面是由二次方程定义的曲面,包括椭球面、单叶双曲面、双叶双曲面、椭圆抛物面和双曲抛物面等五种基本类型。在教学中,【截痕法】是一种常用的方法,通过将坐标平面的平行平面与二次曲面相交,观察截线的形状来...
recommend-type

教师节主题班会.pptx

教师节主题班会.pptx
recommend-type

学生网络安全教育主题班会.pptx

学生网络安全教育主题班会.pptx
recommend-type

世界环境日主题班会.pptx

世界环境日主题班会.pptx
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。