Data<-read.table(file="模式甄别模拟数据3.txt",header=TRUE,sep=",") par(mfrow=c(2,2)) plot(Data[,1:2],main="样本观测点的分布",xlab="x1",ylab="x2",pch=Data[,3]+1,cex=0.8) library("DMwR2") library("sem") Data[which(Data[,3]==3),3]<-NA Data$y<-factor(Data$y) mySelfT<-function(ModelName,TestD) { Yheat<-predict(object=ModelName,newdata=TestD,type="response") return(data.frame(cl=ifelse(Yheat>=0.1,1,0),pheat=Yheat)) } library("lavaan") library("semPlot") library("semTools") SemiT<-SelfTrain(y~.,data=Data,'glm',learner.pars=list(family=binomial(link="logit")),pred="mySelfT",thrConf=0.02,maxIts=100,percFull=1) SemiP<-predict(object=SemiT,newdata=Data,type="response") Data$SemiP<-SemiP Data.Sort<-Data[order(x=Data$SemiP,decreasing=TRUE),] P<-0.30 N<-length(Data[,1]) NoiseP<-head(Data.Sort,trunc(N*P)) colP<-ifelse(1:N %in% rownames(NoiseP),2,1) a<-as.integer(as.vector(Data[,3])) plot(Data[,1:2],main="自训练模式甄别结果(30%)",xlab="x1",ylab="x2",pch=ifelse(is.na(a),3,a)+1,cex=0.8,col=colP)

时间: 2023-06-18 10:08:41 浏览: 107
这是一段 R 语言代码,主要是对模拟数据进行了一些分析和可视化。具体来说,它读取了一个名为“模式甄别模拟数据3.txt”的数据文件,然后对数据进行了绘图和模型训练。 在绘图方面,它使用了“plot”函数将数据的前两列(即“x1”和“x2”)进行了散点图绘制,其中点的颜色和大小由第三列数据(即“Data[,3]”)决定。 在模型训练方面,它使用了“SelfTrain”函数对数据进行了自训练模式甄别。具体来说,它首先将第三列数据中数值为3的行设置为缺失值(即NA),然后将数据分为训练集和测试集。接着,它使用“glm”函数训练了一个逻辑回归模型,并将其作为参数传递给“SelfTrain”函数。在训练过程中,它使用了“mySelfT”函数作为预测函数,并将其作为参数传递给“SelfTrain”函数。最后,它使用“predict”函数对训练集进行预测,并将结果保存在“SemiP”变量中。 最后,它将数据按照“SemiP”变量的值进行排序,并选择前30%的数据作为噪声数据,并将噪声数据的点颜色设置为红色。最终,它使用“plot”函数将带有噪声数据的散点图进行了绘制。
相关问题

Data<-read.table(file="模式甄别模拟数据1.txt",header=TRUE,sep=",") library("mclust") EMfit<-Mclust(data=Data[,-3]) par(mfrow=c(2,2)) Data$ker.scores<-EMfit$uncertainty Data.Sort<-Data[order(x=Data$ker.scores,decreasing=TRUE),] P<-0.1 N<-length(Data[,1]) NoiseP<-head(Data.Sort,trunc(N*P)) colP<-ifelse(1:N %in% rownames(NoiseP),2,1) plot(Data[,1:2],main="EM聚类的模式诊断结果(10%)",xlab="x1",ylab="x2",pch=Data[,3]+1,cex=0.8,col=colP) library("ROCR") pd<-prediction(Data$ker.scores,Data$y) pf1<-performance(pd,measure="rec",x.measure="rpp") pf2<-performance(pd,measure="prec",x.measure="rec") plot(pf1,main="模式甄别的累计回溯精度曲线") plot(pf2,main="模式甄别的决策精度和回溯精度曲线") P<-0.25 NoiseP<-head(Data.Sort,trunc(N*P)) colP<-ifelse(1:N %in% rownames(NoiseP),2,1) plot(Data[,1:2],main="EM聚类的模式诊断结果(25%)",xlab="x1",ylab="x2",pch=Data[,3]+1,cex=0.8,col=colP)

这段代码是用R语言进行数据处理和可视化的操作。首先将模拟数据读入到R中,然后使用mclust包中的Mclust函数进行EM聚类分析,得到每个数据点属于每个聚类的不确定性得分。接着根据不确定性得分对数据点进行排序,并选取不确定性得分最高的一定比例的数据作为噪声数据。根据噪声数据的位置,对数据点进行着色,并用plot函数进行可视化展示。最后,使用ROCR包中的prediction和performance函数,绘制模式甄别的累计回溯精度曲线和决策精度和回溯精度曲线。

Data<-read.table(file="模式甄别模拟数据1.txt",header=TRUE,sep=",") N<-length(Data[,1]) DistM<-as.matrix(dist(Data[,1:2])) par(mfrow=c(2,2)) (D<-quantile(x=DistM[upper.tri(DistM,diag=FALSE)],prob=0.75)) #计算距离的分位数作为阈值D for(i in 1:N){ x<-as.vector(DistM[i,]) Data$DB.scores[i]<-length(which(x>D))/N #计算观测x与其他观测间的距离大于阈值D的个数占比 } Data.Sort<-Data[order(x=Data$DB.score,decreasing=TRUE),] P<-0.1 NoiseP<-head(Data.Sort,trunc(N*P)) colP<-ifelse(1:N %in% rownames(NoiseP),2,1) plot(Data[,1:2],main=paste("DB的模式诊断结果:p=",P,sep=""),xlab="x1",ylab="x2",pch=Data[,3]+1,cex=0.8,col=colP) library("ROCR") pd<-prediction(Data$DB.scores,Data$y) pf1<-performance(pd,measure="rec",x.measure="rpp") #y轴为回溯精度,X轴为预测的模式占总样本的比例 pf2<-performance(pd,measure="prec",x.measure="rec") #y轴为决策精度,X轴为回溯精度 plot(pf1,main="模式甄别的累计回溯精度曲线") plot(pf2,main="模式甄别的决策精度和回溯精度曲线") P<-0.25 NoiseP<-head(Data.Sort,trunc(N*P)) colP<-ifelse(1:N %in% rownames(NoiseP),2,1) plot(Data[,1:2],main=paste("DB的模式诊断结果:p=",P,sep=""),xlab="x1",ylab="x2",pch=Data[,3]+1,cex=0.8,col=colP)

这段代码是一个基于DBSCAN算法的模式甄别模拟。首先,读取了一份包含两个变量和标签的数据集,并计算了每个观测之间的距离矩阵。然后,根据距离矩阵中的分位数计算出一个阈值D,用于判断两个观测是否属于同一个模式。接着,计算每个观测与其他观测之间距离大于阈值D的观测占比,作为DBSCAN算法中的核心参数——邻域半径。最后,根据DBSCAN算法的结果将观测分为模式点和噪声点,并绘制出模式甄别的结果图和累计回溯精度曲线、决策精度和回溯精度曲线。
阅读全文

相关推荐

基于以下R代码:# ①建立50×30的随机数据和30个变量 set.seed(123) X <- matrix(rnorm(50*30), ncol=30) y <- rnorm(50) # ②生成三组不同系数的线性模型 beta1 <- rnorm(30, mean=1, sd=0.5) beta2 <- rnorm(30, mean=2, sd=0.5) beta3 <- rnorm(30, mean=3, sd=0.5) # 定义一个函数用于计算线性回归的CV值 cv_linear <- function(X, y, k=10, lambda=NULL) { n <- nrow(X) if (is.null(lambda)) { lambda <- seq(0, 1, length.out=100) } mse <- rep(0, length(lambda)) folds <- sample(rep(1:k, length.out=n)) for (i in 1:k) { X_train <- X[folds!=i, ] y_train <- y[folds!=i] X_test <- X[folds==i, ] y_test <- y[folds==i] for (j in 1:length(lambda)) { fit <- glmnet(X_train, y_train, alpha=0, lambda=lambda[j]) y_pred <- predict(fit, newx=X_test) mse[j] <- mse[j] + mean((y_test - y_pred)^2) } } mse <- mse / k return(mse) } # ③(线性回归中)分别计算这三组的CV值 lambda <- seq(0, 1, length.out=100) mse1 <- cv_linear(X, y, lambda=lambda) mse2 <- cv_linear(X, y, lambda=lambda) mse3 <- cv_linear(X, y, lambda=lambda) # ④(岭回归中)分别画出这三组的两张图,每组两张图均以lambda为横坐标: library(glmnet) par(mfrow=c(2,3)) # 画Beta1的CV error图 plot(lambda, mse1, type="l", xlab="lambda", ylab="CV error", main="Beta1 CV error") # 画Beta1的Prediction error图 fit1 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse1)]) y_pred1 <- as.vector(predict(fit1, newx=X)) pred_error1 <- mean((y - y_pred1)^2) lambda <- as.vector(lambda) pred_error1 <- as.vector(pred_error1) if (length(lambda) != length(pred_error1)) { if (length(lambda) > length(pred_error1)) { pred_error1 <- rep(pred_error1, length.out = length(lambda)) } else { lambda <- rep(lambda, length.out = length(pred_error1)) } } plot(lambda, pred_error1, type="l", xlab="lambda", ylab="Prediction error", main="Beta1 Prediction error") # 画Beta2的CV error图 plot(lambda, mse2, type="l", xlab="lambda", ylab="CV error", main="Beta2 CV error") # 画Beta2的Prediction error图 fit2 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse2)]) y_pred2 <- predict(fit2, newx=X) pred_error2 <- mean((y - y_pred2)^2) plot(lambda, pred_error2, type="l", xlab="lambda", ylab="Prediction error", main="Beta2 Prediction error") # 画Beta3的CV error图 plot(lambda, mse3, type="l", xlab="lambda", ylab="CV error", main="Beta3 CV error") # 画Beta3的Prediction error图 fit3 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse3)]) y_pred3 <- predict(fit3, newx=X) pred_error3 <- mean((y - y_pred3)^2) plot(lambda, pred_error3, type="l", xlab="lambda", ylab="Prediction error", main="Beta3 Prediction error")。对每组的预测误差图进行代码修改

基于以下代码:# ①建立50×30的随机数据和30个变量 set.seed(123) X <- matrix(rnorm(50*30), ncol=30) y <- rnorm(50) # ②生成三组不同系数的线性模型 beta1 <- rnorm(30, mean=1, sd=0.5) beta2 <- rnorm(30, mean=2, sd=0.5) beta3 <- rnorm(30, mean=3, sd=0.5) # 定义一个函数用于计算线性回归的CV值 cv_linear <- function(X, y, k=10, lambda=NULL) { n <- nrow(X) if (is.null(lambda)) { lambda <- seq(0, 1, length.out=100) } mse <- rep(0, length(lambda)) folds <- sample(rep(1:k, length.out=n)) for (i in 1:k) { X_train <- X[folds!=i, ] y_train <- y[folds!=i] X_test <- X[folds==i, ] y_test <- y[folds==i] for (j in 1:length(lambda)) { fit <- glmnet(X_train, y_train, alpha=0, lambda=lambda[j]) y_pred <- predict(fit, newx=X_test) mse[j] <- mse[j] + mean((y_test - y_pred)^2) } } mse <- mse / k return(mse) } # ③(线性回归中)分别计算这三组的CV值 lambda <- seq(0, 1, length.out=100) mse1 <- cv_linear(X, y, lambda=lambda) mse2 <- cv_linear(X, y, lambda=lambda) mse3 <- cv_linear(X, y, lambda=lambda) # ④(岭回归中)分别画出这三组的两张图,两张图均以lambd为横坐标,一张图以CV error为纵坐标,一张图以Prediction error为纵坐标,两张图同分开在Plots位置 library(glmnet) par(mfrow=c(1,2)) # 画CV error图 plot(lambda, mse1, type="l", xlab="lambda", ylab="CV error", main="Beta1") points(lambda, mse2, type="l", col="red") points(lambda, mse3, type="l", col="blue") # 画Prediction error图 fit1 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse1)]) fit2 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse2)]) fit3 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse3)]) y_pred1 <- predict(fit1, newx=X) y_pred2 <- predict(fit2, newx=X) y_pred3 <- predict(fit3, newx=X) pred_error1 <- mean((y - y_pred1)^2) pred_error2 <- mean((y - y_pred2)^2) pred_error3 <- mean((y - y_pred3)^2) plot(lambda, pred_error1, type="l", xlab="lambda", ylab="Prediction error", main="Beta1") points(lambda, pred_error2, type="l", col="red") points(lambda, pred_error3, type="l", col="blue")。按以下要求修改R代码:将三组的分别以CV error和Prediction error为纵坐标的图,每次Plots位置只会出现同一个组的两张分别以CV error和Prediction error为纵坐标的图

最新推荐

recommend-type

python的uds诊断相关接口

python的uds诊断相关接口
recommend-type

白色大气风格的旅行网站模板下载.zip

白色大气风格的旅行网站模板下载.zip
recommend-type

白色大气风格的模糊背景商务网站模板下载.zip

白色大气风格的模糊背景商务网站模板下载.zip
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单片机编程实战】:掌握流水灯与音乐盒同步控制的高级技巧

![单片机编程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-48cf6abe199bab09d31c122e1f49cea4.png) # 摘要 单片机作为电子技术领域的基础组件,广泛应用于各类控制项目。本文从基础开始,详细探讨了单片机在流水灯和音乐盒项目中的应用原理,并分析了如何实现这两个功能的同步控制。通过对硬件和软件层面的深入剖析,本文提供了一系列实践操作和高级技巧,旨在提升流水灯与音乐盒同步控制的性能和效率。通过本研究,读者将能够更好地理解和掌握单片机在复杂控制系统中的应用,进而创新开发更多