scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=0, num_training_steps=total_steps )
时间: 2023-09-23 09:08:56 浏览: 227
这是一个用于调整学习率的函数,是在训练神经网络时常用的技巧之一。`get_linear_schedule_with_warmup` 函数提供了一个线性的学习率调整策略,其中 `num_warmup_steps` 是指学习率逐渐升高的步数,`num_training_steps` 是指总的训练步数。在训练开始时,学习率逐渐升高,直到达到最大值;在训练的后期,学习率逐渐降低,以使训练更加稳定。此函数的作用是帮助训练神经网络时更加高效地搜索最优解。
相关问题
scheduler = get_linear_schedule_with_warmup(optimizer, UnboundLocalError: local variable 'optimizer' referenced before assignment
看起来您在尝试初始化`scheduler`之前,`optimizer`变量还没有被赋值。这是因为在`get_linear_schedule_with_warmup`函数被调用之前,`optimizer`应该已经被创建并且传递给它了。请确保在调用`scheduler`之前,已经正确地定义和初始化了`optimizer`。这里是修正后的代码:
```python
# 先定义并初始化optimizer
optimizer = AdamW(optimizer_grouped_parameters,
lr=config.learning_rate,
betas=(config.adam_beta1, config.adam_beta2),
eps=config.adam_epsilon,
weight_decay=config.weight_decay)
# 然后再使用optimizer来获取学习率调度器
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=int(0.05 * len(train_iter) * config.num_epochs),
num_training_steps=len(train_iter) * config.num_epochs)
```
现在应该可以正常运行了。
在paddle框架中实现下面的所有代码:class CosineAnnealingWarmbootingLR: # cawb learning rate scheduler: given the warm booting steps, calculate the learning rate automatically def __init__(self, optimizer, epochs=0, eta_min=0.05, steps=[], step_scale=0.8, lf=None, batchs=0, warmup_epoch=0, epoch_scale=1.0): self.warmup_iters = batchs * warmup_epoch self.optimizer = optimizer self.eta_min = eta_min self.iters = -1 self.iters_batch = -1 self.base_lr = [group['lr'] for group in optimizer.param_groups] self.step_scale = step_scale steps.sort() self.steps = [warmup_epoch] + [i for i in steps if (i < epochs and i > warmup_epoch)] + [epochs] self.gap = 0 self.last_epoch = 0 self.lf = lf self.epoch_scale = epoch_scale # Initialize epochs and base learning rates for group in optimizer.param_groups: group.setdefault('initial_lr', group['lr']) def step(self, external_iter = None): self.iters += 1 if external_iter is not None: self.iters = external_iter # cos warm boot policy iters = self.iters + self.last_epoch scale = 1.0 for i in range(len(self.steps)-1): if (iters <= self.steps[i+1]): self.gap = self.steps[i+1] - self.steps[i] iters = iters - self.steps[i] if i != len(self.steps)-2: self.gap += self.epoch_scale break scale *= self.step_scale if self.lf is None: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * ((((1 + math.cos(iters * math.pi / self.gap)) / 2) ** 1.0) * (1.0 - self.eta_min) + self.eta_min) else: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * self.lf(iters, self.gap) return self.optimizer.param_groups[0]['lr'] def step_batch(self): self.iters_batch += 1 if self.iters_batch < self.warmup_iters: rate = self.iters_batch / self.warmup_iters for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = lr * rate return self.optimizer.param_groups[0]['lr'] else: return None
在Paddle框架中实现下面的所有代码:class CosineAnnealingWarmbootingLR:
在Paddle框架中,可以通过继承paddle.optimizer.lr.LRScheduler类来实现CosineAnnealingWarmbootingLR类。具体实现代码如下:
```python
import math
import paddle.optimizer.lr as lr
class CosineAnnealingWarmbootingLR(lr.LRScheduler):
def __init__(self, T_max, T_warmup, eta_min=0, last_epoch=-1):
self.T_max = T_max
self.T_warmup = T_warmup
self.eta_min = eta_min
super(CosineAnnealingWarmbootingLR, self).__init__(last_epoch)
def get_lr(self):
if self.last_epoch < self.T_warmup:
return self.eta_min + (self.base_lr - self.eta_min) * self.last_epoch / self.T_warmup
else:
return self.eta_min + (self.base_lr - self.eta_min) * (1 + math.cos(math.pi * (self.last_epoch - self.T_warmup) / (self.T_max - self.T_warmup))) / 2
```
其中,T_max表示学习率下降的总步数,T_warmup表示学习率从0逐渐增加到初始值的步数,eta_min表示学习率的最小值,last_epoch表示上一次更新学习率的步数。
在get_lr()方法中,首先判断当前步数是否小于T_warmup,如果是,则学习率从0逐渐增加到初始值;否则,学习率按照余弦退火的方式进行下降。具体来说,学习率的下降曲线为:
$$\eta_t = \eta_{min} + \frac{1}{2}(\eta_{max}-\eta_{min})(1+\cos(\frac{\pi(t-T_{warmup})}{T_{max}-T_{warmup}}))$$
其中,$\eta_t$表示第t步的学习率,$\eta_{min}$表示学习率的最小值,$\eta_{max}$表示学习率的初始值,$T_{max}$表示学习率下降的总步数,$T_{warmup}$表示学习率从0逐渐增加到初始值的步数。
阅读全文