以下代码是对NSL-KDD数据集网络入侵检测:model = Sequential() model.add(LSTM(128, return_sequences=True, input_shape=(1, X_train.shape[2]))) model.add(Dropout(0.2)) model.add(LSTM(64, return_sequences=True)) model.add(Attention()) model.add(Flatten()) model.add(Dense(units=50)) model.add(Dense(units=5, activation='softmax')) # Defining loss function, optimizer, metrics and then compiling model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Summary of model layers model.summary() # training the model on training dataset history = model.fit(X_train, y_train, epochs=150, batch_size=5000,validation_split=0.2) # predicting target attribute on testing dataset test_results = model.evaluate(X_test, y_test, verbose=1) # Use the trained model to make predictions on the test dataset y_pred = model.predict(X_test) # Convert predictions from one-hot encoding to integers y_pred = np.argmax(y_pred, axis=1) # Convert true labels from one-hot encoding to integers y_test = np.argmax(y_test, axis=1) # Calculate the confusion matrix cm = confusion_matrix(y_test, y_pred) # Calculate the false positive rate (FPR) fpr = cm[0, 1] / (cm[0, 0] + cm[0, 1])如何用代码实现对模型复杂度的计算
时间: 2023-06-25 15:06:43 浏览: 69
NSL-KDD_NSL-KDD_NSL-KDD数据集_测试集_
5星 · 资源好评率100%
可以使用模型的参数数量作为模型复杂度的度量,可以通过以下代码实现:
```python
# Counting the number of model parameters
num_params = sum([np.prod(var.shape) for var in model.trainable_variables])
print("Number of model parameters: {}".format(num_params))
```
该代码会输出模型中可训练的参数数量,即模型的复杂度。
阅读全文