帮我写一个在STM32F103ZET6上使用的PID控制步进电机运动到指定坐标的代码

时间: 2024-03-10 16:47:12 浏览: 42
以下是一个简单的例子,演示了如何在STM32F103ZET6上使用PID控制步进电机运动到指定坐标的代码: ```c #include "stm32f10x.h" #define PULSE_PER_REV 200 // 步进电机每转的脉冲数 #define STEPS_PER_MM 10 // 步进电机每毫米的脉冲数 #define MAX_SPEED 1000 // 步进电机最大速度,单位:mm/min #define ACC 1000 // 步进电机加速度,单位:mm/min^2 #define KP 1 // 比例系数 #define KI 0.5 // 积分系数 #define KD 0.1 // 微分系数 // 定义步进电机引脚 #define STEP_PIN GPIO_Pin_0 #define DIR_PIN GPIO_Pin_1 #define ENABLE_PIN GPIO_Pin_2 // 定义定时器 #define STEP_TIMER TIM1 // 定义步进电机状态 typedef struct { int32_t pos; // 当前位置,单位:脉冲 int32_t targetPos; // 目标位置,单位:脉冲 int32_t speed; // 当前速度,单位:脉冲/秒 int32_t targetSpeed; // 目标速度,单位:脉冲/秒 int32_t acc; // 加速度,单位:脉冲/秒^2 int32_t maxSpeed; // 最大速度,单位:脉冲/秒 int32_t pulsePerStep; // 每步脉冲数 int32_t stepCounter; // 步进电机计数器 int32_t error; // 误差 int32_t lastError; // 上一次误差 int32_t errorSum; // 误差累计 } StepperState; // 步进电机状态 StepperState stepper; // 步进电机初始化 void stepper_init() { // 使能GPIO时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 配置步进电机引脚为输出 GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = STEP_PIN | DIR_PIN | ENABLE_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); // 使能定时器时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); // 配置定时器 TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct; TIM_TimeBaseInitStruct.TIM_Prescaler = 72 - 1; TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInitStruct.TIM_Period = 1000 - 1; TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(STEP_TIMER, &TIM_TimeBaseInitStruct); // 配置定时器中断 NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = TIM1_UP_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); // 使能定时器更新中断 TIM_ITConfig(STEP_TIMER, TIM_IT_Update, ENABLE); // 启动定时器 TIM_Cmd(STEP_TIMER, ENABLE); // 初始化步进电机状态 stepper.pos = 0; stepper.targetPos = 0; stepper.speed = 0; stepper.targetSpeed = 0; stepper.acc = ACC * STEPS_PER_MM / 60; stepper.maxSpeed = MAX_SPEED * STEPS_PER_MM / 60; stepper.pulsePerStep = PULSE_PER_REV / 200; stepper.stepCounter = 0; stepper.error = 0; stepper.lastError = 0; stepper.errorSum = 0; } // 定时器中断处理函数 void TIM1_UP_IRQHandler() { // 控制步进电机运动 stepper.stepCounter += stepper.speed; if (stepper.stepCounter >= stepper.pulsePerStep) { stepper.stepCounter -= stepper.pulsePerStep; stepper.pos++; GPIO_SetBits(GPIOA, STEP_PIN); GPIO_ResetBits(GPIOA, STEP_PIN); } else if (stepper.stepCounter <= -stepper.pulsePerStep) { stepper.stepCounter += stepper.pulsePerStep; stepper.pos--; GPIO_SetBits(GPIOA, STEP_PIN); GPIO_ResetBits(GPIOA, STEP_PIN); } // 计算PID控制量 stepper.error = stepper.targetPos - stepper.pos; stepper.errorSum += stepper.error; int32_t dError = stepper.error - stepper.lastError; stepper.lastError = stepper.error; int32_t pidOutput = KP * stepper.error + KI * stepper.errorSum + KD * dError; // 更新步进电机速度 stepper.targetSpeed = pidOutput * STEPS_PER_MM / 60; if (stepper.targetSpeed > stepper.maxSpeed) { stepper.targetSpeed = stepper.maxSpeed; } else if (stepper.targetSpeed < -stepper.maxSpeed) { stepper.targetSpeed = -stepper.maxSpeed; } if (stepper.speed < stepper.targetSpeed) { stepper.speed += stepper.acc; if (stepper.speed > stepper.targetSpeed) { stepper.speed = stepper.targetSpeed; } } else if (stepper.speed > stepper.targetSpeed) { stepper.speed -= stepper.acc; if (stepper.speed < stepper.targetSpeed) { stepper.speed = stepper.targetSpeed; } } } // 控制步进电机运动到指定位置 void stepper_move_to(int32_t pos) { stepper.targetPos = pos; } int main() { // 初始化步进电机 stepper_init(); // 控制步进电机运动到指定位置 stepper_move_to(1000); while (1) { // ... } } ``` 在这个例子中,我们使用PID控制步进电机运动到指定位置。在定时器中断处理函数中,我们控制步进电机按照目标速度运动,并计算出PID控制量。在PID控制量计算完成之后,我们根据控制量调整步进电机的速度。

相关推荐

最新推荐

recommend-type

启明欣欣stm32f103rct6开发板原理图

STM32F103RCT6是一款基于ARM Cortex-M3内核的微控制器,由意法半导体(STM)生产。这款芯片具有高性能、低功耗的特点,适用于各种嵌入式应用,如工业控制、消费电子和通信设备等。启明欣欣STM32F103RCT6开发板提供了...
recommend-type

STM32F103RET6TR中文数据手册.pdf

STM32F103RET6TR是一款基于ARM Cortex-M3内核的32位微控制器,由意法半导体(STMicroelectronics)生产。这款微控制器适用于一系列STM32F103型号,包括STM32F103RE、STM32F103ZE、STM32F103VE等。它拥有丰富的特性,...
recommend-type

嵌入式实验报告 stm32f103 跑马灯实验 GPIO口操作

在本实验报告中,我们关注的是“嵌入式实验报告 STM32F103 跑马灯实验 GPIO 口操作”。实验的目标是让学生掌握 STM32 的基本编程技巧,特别是GPIO的操作,以实现LED流水灯的效果。下面将详细讨论相关知识点。 1. **...
recommend-type

LIBSVM参数实例详解.rar

神经网络的matlab案例,本案例介绍如下: 技术深度:案例详细介绍了如何使用MATLAB进行深度学习模型的构建、训练和测试。 实际应用:通过具体的图像识别任务,展示模型的实际应用效果,让你直观感受神经网络的强大能力。 代码解析:提供完整的MATLAB代码,并对关键部分进行详细注释,帮助你理解每一步的工作原理。 优化策略:探讨不同的训练策略和参数调整方法,优化模型性能。
recommend-type

基于JAVA在线考试管理系统(源代码+论文+开题报告+外文翻译+英文文献+答辩PPT).rar

基于JAVA在线考试管理系统(源代码+论文+开题报告+外文翻译+英文文献+答辩PPT).rar
recommend-type

计算机系统基石:深度解析与优化秘籍

深入理解计算机系统(原书第2版)是一本备受推崇的计算机科学教材,由卡耐基梅隆大学计算机学院院长,IEEE和ACM双院院士推荐,被全球超过80所顶级大学选作计算机专业教材。该书被誉为“价值超过等重量黄金”的无价资源,其内容涵盖了计算机系统的核心概念,旨在帮助读者从底层操作和体系结构的角度全面掌握计算机工作原理。 本书的特点在于其起点低但覆盖广泛,特别适合大三或大四的本科生,以及已经完成基础课程如组成原理和体系结构的学习者。它不仅提供了对计算机原理、汇编语言和C语言的深入理解,还包含了诸如数字表示错误、代码优化、处理器和存储器系统、编译器的工作机制、安全漏洞预防、链接错误处理以及Unix系统编程等内容,这些都是提升程序员技能和理解计算机系统内部运作的关键。 通过阅读这本书,读者不仅能掌握系统组件的基本工作原理,还能学习到实用的编程技巧,如避免数字表示错误、优化代码以适应现代硬件、理解和利用过程调用、防止缓冲区溢出带来的安全问题,以及解决链接时的常见问题。这些知识对于提升程序的正确性和性能至关重要,使读者具备分析和解决问题的能力,从而在计算机行业中成为具有深厚技术实力的专家。 《深入理解计算机系统(原书第2版)》是一本既能满足理论学习需求,又能提供实践经验指导的经典之作,无论是对在校学生还是职业程序员,都是提升计算机系统知识水平的理想读物。如果你希望深入探究计算机系统的世界,这本书将是你探索之旅的重要伴侣。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

PHP数据库操作实战:手把手教你掌握数据库操作精髓,提升开发效率

![PHP数据库操作实战:手把手教你掌握数据库操作精髓,提升开发效率](https://img-blog.csdn.net/20180928141511915?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MzE0NzU5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 1. PHP数据库操作基础** PHP数据库操作是使用PHP语言与数据库交互的基础,它允许开发者存储、检索和管理数据。本章将介绍PHP数据库操作的基本概念和操作,为后续章节奠定基础。
recommend-type

vue-worker

Vue Worker是一种利用Web Workers技术的 Vue.js 插件,它允许你在浏览器的后台线程中运行JavaScript代码,而不影响主线程的性能。Vue Worker通常用于处理计算密集型任务、异步I/O操作(如文件读取、网络请求等),或者是那些需要长时间运行但不需要立即响应的任务。 通过Vue Worker,你可以创建一个新的Worker实例,并将Vue实例的数据作为消息发送给它。Worker可以在后台执行这些数据相关的操作,然后返回结果到主页面上,实现了真正的非阻塞用户体验。 Vue Worker插件提供了一个简单的API,让你能够轻松地在Vue组件中管理worker实例
recommend-type

《ThinkingInJava》中文版:经典Java学习宝典

《Thinking in Java》中文版是由知名编程作家Bruce Eckel所著的经典之作,这本书被广泛认为是学习Java编程的必读书籍。作为一本面向对象的编程教程,它不仅适合初学者,也对有一定经验的开发者具有启发性。本书的核心目标不是传授Java平台特定的理论,而是教授Java语言本身,着重于其基本语法、高级特性和最佳实践。 在内容上,《Thinking in Java》涵盖了Java 1.2时期的大部分关键特性,包括Swing GUI框架和新集合类库。作者通过清晰的讲解和大量的代码示例,帮助读者深入理解诸如网络编程、多线程处理、虚拟机性能优化以及与其他非Java代码交互等高级概念。书中提供了320个实用的Java程序,超过15000行代码,这些都是理解和掌握Java语言的宝贵资源。 作为一本获奖作品,Thinking in Java曾荣获1995年的Software Development Jolt Award最佳书籍大奖,体现了其在业界的高度认可。Bruce Eckel不仅是一位经验丰富的编程专家,还是C++领域的权威,他拥有20年的编程经历,曾在世界各地教授对象编程,包括C++和Java。他的著作还包括Thinking in C++,该书同样广受好评。 作者不仅是一位技术导师,还是一位教育家,他善于用易于理解的方式阐述复杂的编程概念,使读者能够领略到编程中的“智慧”。与其他Java教材相比,《Thinking in Java》以其成熟、连贯、严谨的风格,赢得了读者的一致赞誉,被誉为最全面且实例恰当的编程指南,是学习Java过程中不可或缺的参考资料。 此外,本书还提供了配套的CD,包含15小时的语音授课,以及可以从Bruce Eckel的官方网站www.BruceEckel.com免费获取的源码和电子版更新,确保读者能够跟随最新的技术发展保持同步。无论你是Java新手还是进阶者,《Thinking in Java》都是一次深入探索Java世界的重要旅程。