给我这个代码的注释f = g[0, 0] + (g[0, 1] * x) fig, ax = plt.subplots(figsize=(12, 8)) ax.plot(x, f, 'r', label='预测值') ax.scatter(data['人口'], data['收益'], label='训练数据') ax.legend(loc=2) ax.set_xlabel('人口', fontsize=18) ax.set_ylabel('收益', rotation=0, fontsize=18) ax.set_title('预测收益和人口规模', fontsize=18) plt.show()
时间: 2023-03-30 07:00:38 浏览: 289
这段代码是用来进行数据可视化的,首先定义了一个函数f,其中g[,]表示g矩阵中第一行第一列的元素,g[,1]*x表示g矩阵中第一行第二列的元素与x相乘的结果。接下来使用matplotlib库创建一个图形窗口,设置图形大小为12*8,然后使用plot函数绘制预测值的曲线,使用scatter函数绘制训练数据的散点图,使用legend函数添加图例,使用set_xlabel和set_ylabel函数设置x轴和y轴的标签,使用set_title函数设置图形标题,最后使用show函数显示图形。
相关问题
能帮我优化一下下面这段代码并增加一些注释吗import matplotlib matplotlib.use('Qt5Agg') from numpy import pi, sin import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button, RadioButtons def signal(amp, freq): return amp * sin(2 * pi * freq * t) axis_color = 'lightgoldenrodyellow' fig = plt.figure() ax = fig.add_subplot(111) fig.subplots_adjust(left=0.25, bottom=0.25) t = np.arange(-10, 10.0, 0.001) [line] = ax.plot(t, signal(5, 2), linewidth=2, color='red') ax.set_xlim([0, 1]) ax.set_ylim([-10, 10]) zoom_slider_ax = fig.add_axes([0.25, 0.1, 0.65, 0.03], facecolor=axis_color) zoom_slider = Slider(zoom_slider_ax, 'Zoom', -1, 1, valinit=0) def sliders_on_changed(val, scale_factor=0.25): cur_xlim = ax.get_xlim() cur_ylim = ax.get_ylim() scale = zoom_slider.val*scale_factor x_left = 0 + scale x_right = 1 - scale y_top = 10 - scale*10 y_bottom = -10 + scale*10 ax.set_xlim([x_left, x_right]) ax.set_ylim([y_bottom, y_top]) fig.canvas.draw_idle() zoom_slider.on_changed(sliders_on_changed) reset_button_ax = fig.add_axes([0.8, 0.025, 0.1, 0.04]) reset_button = Button(reset_button_ax, 'Reset', color=axis_color, hovercolor='0.975') def reset_button_on_clicked(mouse_event): zoom_slider.reset() reset_button.on_clicked(reset_button_on_clicked) color_radios_ax = fig.add_axes([0.025, 0.5, 0.15, 0.15], facecolor=axis_color) color_radios = RadioButtons(color_radios_ax, ('red', 'blue', 'green'), active=0) def color_radios_on_clicked(label): line.set_color(label) fig.canvas.draw_idle() color_radios.on_clicked(color_radios_on_clicked) plt.show()
当然可以,下面是代码的优化和注释:
```python
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button, RadioButtons
# 定义信号函数
def signal(amp, freq, t):
return amp * np.sin(2 * np.pi * freq * t)
# 设置图形参数
axis_color = 'lightgoldenrodyellow'
fig, ax = plt.subplots()
fig.subplots_adjust(left=0.25, bottom=0.25)
# 设置时间轴
t = np.arange(-10, 10.0, 0.001)
# 绘制信号曲线
[line] = ax.plot(t, signal(5, 2, t), linewidth=2, color='red')
ax.set_xlim([0, 1])
ax.set_ylim([-10, 10])
# 添加缩放滑块
zoom_slider_ax = fig.add_axes([0.25, 0.1, 0.65, 0.03], facecolor=axis_color)
zoom_slider = Slider(zoom_slider_ax, 'Zoom', -1, 1, valinit=0)
# 滑块改变时的回调函数
def sliders_on_changed(val, scale_factor=0.25):
cur_xlim = ax.get_xlim()
cur_ylim = ax.get_ylim()
scale = zoom_slider.val*scale_factor
x_left = 0 + scale
x_right = 1 - scale
y_top = 10 - scale*10
y_bottom = -10 + scale*10
ax.set_xlim([x_left, x_right])
ax.set_ylim([y_bottom, y_top])
fig.canvas.draw_idle()
zoom_slider.on_changed(sliders_on_changed)
# 添加重置按钮
reset_button_ax = fig.add_axes([0.8, 0.025, 0.1, 0.04])
reset_button = Button(reset_button_ax, 'Reset', color=axis_color, hovercolor='0.975')
# 重置按钮点击时的回调函数
def reset_button_on_clicked(mouse_event):
zoom_slider.reset()
reset_button.on_clicked(reset_button_on_clicked)
# 添加颜色选择按钮
color_radios_ax = fig.add_axes([0.025, 0.5, 0.15, 0.15], facecolor=axis_color)
color_radios = RadioButtons(color_radios_ax, ('red', 'blue', 'green'), active=0)
# 颜色选择按钮点击时的回调函数
def color_radios_on_clicked(label):
line.set_color(label)
fig.canvas.draw_idle()
color_radios.on_clicked(color_radios_on_clicked)
plt.show()
```
优化如下:
1. 将 `sin` 改为 `np.sin`,避免使用 `from numpy import *` 导致命名冲突或覆盖内置函数。
2. 将 `signal` 函数中的 `t` 参数移动到函数参数列表中,增加代码可读性。
3. 将 `fig, ax` 和 `plt.subplots()` 合并成一个语句,简化代码。
4. 在 `Slider`、`Button` 和 `RadioButtons` 的初始化中,添加 `color` 和 `hovercolor` 参数,避免鼠标悬停时颜色过于明亮。
5. 将回调函数和控件的绑定分别放在不同的代码块中,增加代码可读性。
给我这个代码的注释fig, ax = plt.subplots(figsize=(12, 8)) ax.plot(np.arange(iters), cost, 'r') ax.set_xlabel('迭代次数', fontsize=18) ax.set_ylabel('代价', rotation=0, fontsize=18) ax.set_title('误差和训练Epoch数', fontsize=18) plt.show()
这段代码是用来绘制误差和训练Epoch数的图像,其中fig是图像对象,ax是坐标轴对象,plt.subplots()函数用于创建一个包含一个图像和一个坐标轴的元组,figsize参数指定图像的大小,np.arange()函数用于生成一个等差数列,表示迭代次数,cost是代价,'r'表示红色线条,ax.set_xlabel()和ax.set_ylabel()函数用于设置坐标轴的标签,ax.set_title()函数用于设置图像的标题,plt.show()函数用于显示图像。
阅读全文
相关推荐

















