import matplotlib.pyplot as plt import numpy as np # 构造极坐标数据 r = np.arange(0, 3, 0.002) theta = 2 * np.pi * r # 创建画布和坐标系 fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(111, projection='polar') # 绘制螺旋线 ax.plot(theta, r, label='Archimedean spiral') # 设置极坐标刻度 ax.set_rticks([0.5, 1, 1.5, 2, 2.5, 3]) # 添加注释文本和标记 ax.annotate('a polar annotation', xy=(5*np.pi/4, 0.6), xytext=(np.pi/2, -0.5), arrowprops=dict(arrowstyle='->', connectionstyle='arc3', color='red')) ax.text(np.pi/2, 0.9, '1.0', ha='center', va='center') ax.text(np.pi/2, -0.1, '0.0', ha='center', va='center') ax.plot(5*np.pi/4, 0.6, 'ro') plt.show()为撒会出现StopIteration: <Figure size 576x576 with 1 Axes>这样的问题怎么修改可以显示图像

时间: 2023-11-26 19:03:34 浏览: 32
根据您提供的代码,没有明显的出现StopIteration错误的原因。我猜测您可能在运行其他的代码时出现了这个错误,而这段代码没有直接引起错误。 如果您的问题是无法显示图像,有以下几种可能的原因: 1. 没有调用`plt.show()`函数:在使用matplotlib绘图时,需要使用`plt.show()`函数将图像显示出来。如果没有调用该函数,图像将不会显示。 2. 图像被阻塞:有时候,如果代码中有其他长时间运行的操作,如循环或者等待输入,可能会导致图像被阻塞,无法显示。可以尝试使用多线程或者多进程来解决这个问题。 3. 画布大小过小:如果画布的大小设置太小,图像可能无法显示。可以尝试增加画布的大小。 如果以上方法都不能解决问题,请提供更多信息,以便我们更好地理解和解决问题。
相关问题

import matplotlib.pyplot as plt import numpy as np # 构造极坐标数据 r = np.arange(0, 3, 0.002) theta = 2 * np.pi * r # 创建画布和坐标系 fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(111, projection='polar') # 绘制螺旋线 ax.plot(theta, r, label='Archimedean spiral') # 设置极坐标刻度 ax.set_rticks([0.5, 1, 1.5, 2, 2.5, 3])标注螺旋线中除起始点外的一个交点

好的,你的问题是如何标注螺旋线中除起始点外的一个交点? 要标注螺旋线中的一个交点,可以使用 Matplotlib 中的 annotate 函数。首先需要确定交点的坐标,可以通过计算螺旋线的极坐标方程来获得。例如,假设我们要标注第一个圈与第二个圈之间的交点,可以计算出对应的极坐标角度和半径: ``` theta_i = 2 * np.pi * 1 r_i = 1 ``` 然后,可以使用 annotate 函数在交点处添加一个文本标注。例如,可以添加一个带箭头的文本框,其中箭头指向交点,文本框中显示交点的坐标: ``` ax.annotate('({:.2f}, {:.2f})'.format(theta_i, r_i), xy=(theta_i, r_i), xycoords='data', xytext=(-50, 30), textcoords='offset points', arrowprops=dict(arrowstyle='->', connectionstyle='arc3, rad=.5')) ``` 其中,`xy` 指定箭头指向的坐标,`xycoords` 指定坐标系类型为数据坐标系,`xytext` 指定文本框的偏移量,`textcoords` 指定偏移量坐标系类型为相对于文本框的坐标系,`arrowprops` 指定箭头样式和连接线样式。 完整的代码如下所示: ``` import matplotlib.pyplot as plt import numpy as np # 构造极坐标数据 r = np.arange(0, 3, 0.002) theta = 2 * np.pi * r # 创建画布和坐标系 fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(111, projection='polar') # 绘制螺旋线 ax.plot(theta, r, label='Archimedean spiral') # 设置极坐标刻度 ax.set_rticks([0.5, 1, 1.5, 2, 2.5, 3]) # 标注交点 theta_i = 2 * np.pi * 1 r_i = 1 ax.annotate('({:.2f}, {:.2f})'.format(theta_i, r_i), xy=(theta_i, r_i), xycoords='data', xytext=(-50, 30), textcoords='offset points', arrowprops=dict(arrowstyle='->', connectionstyle='arc3, rad=.5')) plt.show() ``` 输出的图像中,螺旋线中除起始点外的一个交点被标注为文本框,其中显示了交点的极坐标坐标值。

给代码注释from numpy importimport matplotlib.pyplot as pltimport math # creating an array# containing the radian valuesrads = arange(0,(30 * pi),0.01) # plotting the ellipsefor rad in rads: r = sin(8*rad/5)plt.plot(n*cos(rad),n*sin(rad),'r.')plt.grid()# display the polar plotplt.show()

```python # 导入需要的库 from numpy import * import matplotlib.pyplot as plt import math # 创建一个包含弧度值的数组 rads = arange(0, (30 * pi), 0.01) # 在每个弧度值上计算相应的椭圆半径 for rad in rads: # 计算椭圆半径 r = sin(8 * rad / 5) # 绘制椭圆上的点,使用红色圆点作为点的标记 n = 1 plt.plot(n * cos(rad), n * sin(rad), 'r.') # 添加网格线 plt.grid() # 显示极坐标图 plt.show() ``` 注释: 1. 导入 numpy 和 matplotlib.pyplot 库。 2. 创建一个包含弧度值的数组。 3. 在每个弧度值上计算相应的椭圆半径,其中椭圆方程为 `r = sin(8 * rad / 5)`。 4. 使用 `plt.plot(n * cos(rad), n * sin(rad), 'r.')` 绘制极坐标图中的点,其中 `n` 为椭圆的半径,'r.' 表示使用红色圆点作为点的标记。 5. 使用 `plt.grid()` 添加网格线。 6. 使用 `plt.show()` 显示绘制的极坐标图。

相关推荐

注释下列代码import numpy as np import matplotlib.pyplot as plt def plot_radar(data): ''' the first column of the data is the cluster name; the second column is the number of each cluster; the last are those to describe the center of each cluster. ''' kinds = data.iloc[:, 0] labels = data.iloc[:, 2:].columns centers = pd.concat([data.iloc[:, 2:], data.iloc[:,2]], axis=1) centers = np.array(centers) n = len(labels) angles = np.linspace(0, 2*np.pi, n, endpoint=False) angles = np.concatenate((angles, [angles[0]])) fig = plt.figure() ax = fig.add_subplot(111, polar=True) # 设置坐标为极坐标 # 画若干个五边形 floor = np.floor(centers.min()) # 大于最小值的最大整数 ceil = np.ceil(centers.max()) # 小于最大值的最小整数 for i in np.arange(floor, ceil + 0.5, 0.5): ax.plot(angles, [i] * (n + 1), '--', lw=0.5 , color='black') # 画不同客户群的分割线 for i in range(n): ax.plot([angles[i], angles[i]], [floor, ceil], '--', lw=0.5, color='black') # 画不同的客户群所占的大小 for i in range(len(kinds)): ax.plot(angles, centers[i], lw=2, label=kinds[i]) #ax.fill(angles, centers[i]) ax.set_thetagrids(angles * 180 / np.pi, labels) # 设置显示的角度,将弧度转换为角度 plt.legend(loc='lower right', bbox_to_anchor=(1.5, 0.0)) # 设置图例的位置,在画布外 ax.set_theta_zero_location('N') # 设置极坐标的起点(即0°)在正北方向,即相当于坐标轴逆时针旋转90° ax.spines['polar'].set_visible(False) # 不显示极坐标最外圈的圆 ax.grid(False) # 不显示默认的分割线 ax.set_yticks([]) # 不显示坐标间隔 plt.show() plot_radar(data)

#外点法(能运行出来) import math import sympy import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D plt.ion() fig = plt.figure() ax = Axes3D(fig) def draw(x,index,M): # F = f + MM * alpha # FF = sympy.lambdify((x1, x2), F, 'numpy') Z = FF(*(X, Y,M)) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow',alpha=0.5) ax.scatter(x[0], x[1], FF(*(x[0],x[1],M)), c='r',s=80) ax.text(x[0], x[1], FF(*(x[0],x[1],M)), 'here:(%0.3f,%0.3f)' % (x[0], x[1])) ax.set_zlabel('F') # 坐标轴 ax.set_ylabel('X2') ax.set_xlabel('X1') plt.pause(0.1) # plt.show() # plt.savefig('./image/%03d' % index) plt.cla() C = 10 # 放大系数 M = 1 # 惩罚因子 epsilon = 1e-5 # 终止限 x1, x2 = sympy.symbols('x1:3') MM=sympy.symbols('MM') f = -x1 + x2 h = x1 + x2 - 1 # g=sympy.log(x2) if sympy.log(x2)<0 else 0 g = sympy.Piecewise((x2-1, x2 < 1), (0, x2 >= 1)) # u=lambda x: alpha = h ** 2 + g ** 2 F = f + MM * alpha # 梯度下降来最小化F def GD(x,M,n): # F = f + M * alpha # delta_x = 1e-11 # 数值求导 # t = 0.0001 # 步长 e = 0.001 # 极限 # my_print(e) np.array(x) for i in range(15): t = sympy.symbols('t') grad = np.asarray( [sympy.diff(F, x1).subs([(x1, x[0]), (x2, x[1]),(MM,M)]), sympy.diff(F, x2).subs([(x1, x[0]), (x2, x[1]),(MM,M)])]) # print('g',grad) # print((x-t*grad)) # print(F.subs([(x1,(x-t*grad)[0]),(x2,(x-t*grad)[1])])) t = sympy.solve(sympy.diff(F.subs([(x1, (x - t * grad)[0]), (x2, (x - t * grad)[1]),(MM,M)]), t), t) print('t',t) x = x - t * grad print('x', x) # print('mmm',M) draw(x,n*10+i,M) # my_print(np.linalg.norm(grad)) # print(type(grad)) if (abs(grad[0]) < e and abs(grad[1]) < e): # print(np.linalg.norm(grad)) print('g', grad) break return list(x) pass x = [-0.5, 0.2] X = np.arange(0, 4, 0.25) Y = np.arange(0, 4,

最新推荐

recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

setuptools-34.0.3.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.