from sympy import * from math import * import numpy as np from matplotlib import pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签 from sympy import * # 用于求导积分等科学计算 # 对数函数图像 def fun_format(): plt.xlabel('x') plt.ylabel('y') plt.xlim((0,10)) plt.ylim((-10,10)) plt.tight_layout() x,y = symbols('x y') # 引入x y变量 expr = log2(x)# 计算表达式 x_value = [] # 用于保存x值 y_value = [] # 用于保存y值 y_value_dif = [] # 用于保存一阶导数值 expr_dif = diff(expr,x,1) for i in np.arange(0.1,10,0.1): x_value.append(i) y_value.append(expr.subs('x',i)) # 将i值代入表达式 y_value_dif.append(expr_dif.subs('x',i)) # 将i值代入一阶求导表达式 fig=plt.figure() ax1=fig.add_subplot(2,1,1) # plt.title('f(x)='+str(expr)) fun_format() ax1.plot(x_value,y_value) # 画原函数图 ax2=fig.add_subplot(2,2,3) plt.title('f(x)_dot='+str(expr_dif)) fun_format() ax2.plot(x_value,y_value_dif) # 画一阶导数图

时间: 2024-03-31 21:33:46 浏览: 16
这段代码是用Python绘制对数函数及其一阶导数的图像,其中使用了Sympy库进行科学计算。具体来说,代码中的`log2(x)`表示以2为底的对数函数,`diff(expr,x,1)`表示对`expr`进行一阶求导,`expr.subs('x',i)`表示将`i`值代入表达式中计算得到函数值。 代码中的注释已经解释了每一步的作用,你可以尝试运行这段代码,观察绘制出的对数函数及一阶导数的图像。如果要绘制其他底数的对数函数,只需将`log2`替换为`log`或`log10`即可。
相关问题

import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from scipy import integrate import sympy import mpmath

这段代码导入了matplotlib、numpy、scipy、sympy和mpmath这五个库。其中,matplotlib是用于画图的库,numpy是用于数值计算的库,scipy是用于科学计算的库,sympy是用于符号计算的库,mpmath是用于高精度计算的库。这些库都是Python中常用的科学计算库。

from sympy import * from math import * import numpy as np from matplotlib import pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号 import numpy as np import matplotlib.pyplot as plt from sympy import * # 用于求导积分等科学计算 # 一元一次函数图像 def fun_format(): plt.xlabel('x') plt.ylabel('y') plt.xlim((-10,10)) plt.ylim((-20,20)) plt.tight_layout() x,y = symbols('x y') # 引入x y变量 expr = log(x)# 计算表达式 x_value = [] # 用于保存x值 y_value = [] # 用于保存y值 y_value_dif = [] # 用于保存一阶导数值 expr_dif = diff(expr,x,1) for i in np.arange(-10,10,0.1): x_value.append(i) y_value.append(expr.subs('x',i)) # 将i值代入表达式 y_value_dif.append(expr_dif.subs('x',i)) # 将i值代入一阶求导表达式 fig=plt.figure() ax1=fig.add_subplot(2,1,1) # plt.title('f(x)='+str(expr)) fun_format() ax1.plot(x_value,y_value) # 画原函数图 ax2=fig.add_subplot(2,2,3) plt.title('f(x)_dot='+str(expr_dif)) fun_format() ax2.plot(x_value,y_value_dif) # 画一阶导数图

这段代码的作用是画出对数函数的图像及其一阶导数图像。具体来说,代码中: - 引入了 matplotlib 和 sympy 库。 - 定义了一个函数 `fun_format()`,用于设置坐标轴范围、标签等格式。 - 定义了变量 x 和 y。 - 定义了表达式 `expr = log(x)`,这是对数函数的表达式。 - 计算了 x 和 y 的值,存储在 `x_value` 和 `y_value` 两个列表中。这里使用了 sympy 库中的 `subs()` 函数将 x 的值代入表达式中计算 y 的值。 - 计算了对数函数的一阶导数表达式 `expr_dif = diff(expr,x,1)`。 - 计算了一阶导数的值,存储在 `y_value_dif` 列表中。 - 使用 matplotlib 库画出对数函数图像和一阶导数图像。 需要注意的是,这段代码中没有对 x 取大于0的值,因此在 x=0 时会出现错误。另外,代码中的注释比较少,可读性有些欠缺,建议加上更详细的注释。

相关推荐

#外点法(能运行出来) import math import sympy import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D plt.ion() fig = plt.figure() ax = Axes3D(fig) def draw(x,index,M): # F = f + MM * alpha # FF = sympy.lambdify((x1, x2), F, 'numpy') Z = FF(*(X, Y,M)) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow',alpha=0.5) ax.scatter(x[0], x[1], FF(*(x[0],x[1],M)), c='r',s=80) ax.text(x[0], x[1], FF(*(x[0],x[1],M)), 'here:(%0.3f,%0.3f)' % (x[0], x[1])) ax.set_zlabel('F') # 坐标轴 ax.set_ylabel('X2') ax.set_xlabel('X1') plt.pause(0.1) # plt.show() # plt.savefig('./image/%03d' % index) plt.cla() C = 10 # 放大系数 M = 1 # 惩罚因子 epsilon = 1e-5 # 终止限 x1, x2 = sympy.symbols('x1:3') MM=sympy.symbols('MM') f = -x1 + x2 h = x1 + x2 - 1 # g=sympy.log(x2) if sympy.log(x2)<0 else 0 g = sympy.Piecewise((x2-1, x2 < 1), (0, x2 >= 1)) # u=lambda x: alpha = h ** 2 + g ** 2 F = f + MM * alpha # 梯度下降来最小化F def GD(x,M,n): # F = f + M * alpha # delta_x = 1e-11 # 数值求导 # t = 0.0001 # 步长 e = 0.001 # 极限 # my_print(e) np.array(x) for i in range(15): t = sympy.symbols('t') grad = np.asarray( [sympy.diff(F, x1).subs([(x1, x[0]), (x2, x[1]),(MM,M)]), sympy.diff(F, x2).subs([(x1, x[0]), (x2, x[1]),(MM,M)])]) # print('g',grad) # print((x-t*grad)) # print(F.subs([(x1,(x-t*grad)[0]),(x2,(x-t*grad)[1])])) t = sympy.solve(sympy.diff(F.subs([(x1, (x - t * grad)[0]), (x2, (x - t * grad)[1]),(MM,M)]), t), t) print('t',t) x = x - t * grad print('x', x) # print('mmm',M) draw(x,n*10+i,M) # my_print(np.linalg.norm(grad)) # print(type(grad)) if (abs(grad[0]) < e and abs(grad[1]) < e): # print(np.linalg.norm(grad)) print('g', grad) break return list(x) pass x = [-0.5, 0.2] X = np.arange(0, 4, 0.25) Y = np.arange(0, 4,

import numpy as np import matplotlib.pyplot as plt import sympy from scipy.interpolate import interp1d gamma = 1.2 R = 8.314 T0 = 500 Q = 50 * R * T0 a0 = np.sqrt(gamma * R * T0) M0 = 6.216 P_P0 = sympy.symbols('P_P0') num = 81 x0 = np.linspace(0,1,num) t_t0 = np.linspace(0,15,num) x = x0[1:] T_T0 = t_t0[1:] h0 = [] h1 = []#创建拉姆达为1的空数组 r = [] t = [] c = [] s = [] i = 0 for V_V0 in x: n1 = sympy.solve(1 / (gamma-1) * (P_P0 * V_V0 - 1) - 0.5 * (P_P0 + 1) * (1 - V_V0)- gamma * 0 * Q / a0 ** 2,P_P0)#lamuda=0的Hugoniot曲线方程 n2 = sympy.solve(1 / (gamma-1) * (P_P0 * V_V0 - 1) - 0.5 * (P_P0 + 1) * (1 - V_V0)- gamma * 1 * Q / a0 ** 2,P_P0)#lamuda=1的Hugoniot曲线方程 n3 = sympy.solve(-1 * P_P0 + 1 - gamma * M0 ** 2 * (V_V0 - 1),P_P0)#Reyleigh曲线方程 n4 = 12.014556 / V_V0#等温线 n5 = sympy.solve((P_P0 - 1 / (gamma+1) )* (V_V0-gamma / (gamma + 1)) - gamma / ((gamma + 1) ** 2),P_P0)#声速线 n6 = 10.6677 / np.power(V_V0,1.2)#等熵线 h0.append(n1) h1.append(n2) r.append(n3) t.append(n4) c.append(n5) s.append(n6) i = i+1 h0 = np.array(h0) h1 = np.array(h1) r = np.array(r) t = np.array(t) c = np.array(c) s = np.array(s) plt.plot(x,r,label='Rayleigh') plt.plot(x,t,color='purple',label='isothermal') plt.plot(x,s,color='skyblue',label='isentropic') a = np.where(h0 < 0) b = np.where(c < 0) h0 = np.delete(h0,np.where(h0 < 0)[0],axis = 0)#去除解小于0的值 h1 = np.delete(h1,np.where(h1 < 0)[0],axis = 0)#去除解小于0的值 c = np.delete(c,np.where(c < 0)[0],axis = 0)#去除解小于0的值 x0 = np.delete(x,a,axis = 0)#对应去除x轴上错误值的坐标 x1 = np.delete(x,b,axis = 0) plt.plot(x0,h0,label='Hugoniot(lambda=0)') plt.plot(x0,h1,label='Hugoniot(lambda=1)') plt.plot(x1,c,color='yellow',label='soniclocus') plt.ylim((0,50)) plt.legend() # 显示图例 plt.xlabel('V/V0') plt.ylabel('P/P0') f1 = interp1d(x1, c.T, kind='cubic') f2 = interp1d(x,r.T,kind='cubic') f3 = interp1d(x, t.T, kind='cubic') epsilon = 0.0001 x0 = 0.56 y0 = f1(x0) - f2(x0) while abs(y0) > epsilon: df = (f1(x0 + epsilon) - f2(x0 + epsilon) - y0) / epsilon x0 -= y0 / df y0 = f1(x0) - f2(x0) plt.scatter(x0, y0, 50, color ='red') plt.show()

最新推荐

recommend-type

sympy-docs-pdf-1.6.2.pdf

sympy是python的一个用于科学计算的库,可解方程和方程组,计算极限,积分,微分,微积分,矩阵,级数等
recommend-type

基于EasyX的贪吃蛇小游戏 - C语言

基于EasyX的贪吃蛇小游戏 - C语言
recommend-type

Energy Core ECP5705-V01.pdf

Energy Core ECP5705-V01.pdf
recommend-type

matlabGUI学生成绩管理系统pdf

建立基于图形用户界面GUI的学生成绩管理系统,该系统能够实现学生成绩信息的增加、删除、查询(查询某门课所有学生的成绩并显示排名,查询某个学生的各科成绩并显示排名)、课程成绩统计最高分、最低分、平均分、方差、并显示相应的排名;绘制柱状图、条形图、饼状图、正太分布曲线等功能。 通过本实验使学生掌握图形用户界面GUI的操作和设计流程,并通过编写回调函数巩固前期的知识。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法自动优化指南:解放算法调优,提升效率

![MATLAB遗传算法自动优化指南:解放算法调优,提升效率](https://help-static-aliyun-doc.aliyuncs.com/assets/img/zh-CN/8487939061/p208348.png) # 1. MATLAB遗传算法概述** 遗传算法是一种受生物进化启发的优化算法,它模拟了自然选择和遗传的过程。在MATLAB中,遗传算法工具箱提供了丰富的函数和类,用于创建和运行遗传算法。 **1.1 遗传算法的基本原理** 遗传算法的工作原理如下: - **初始化:**创建由随机个体组成的初始种群。 - **评估:**根据目标函数计算每个个体的适应度。 -
recommend-type

failed to register layer: ApplyLayer exit status 1 stdout: stderr: archive/tar: invalid tar header

很抱歉听到这个问题。这个错误通常是由于Docker镜像损坏或Docker存储库中缺少所需的图层引起的。您可以尝试以下几种方法来解决这个问题: 1. 清理Docker镜像和容器:使用命令“docker system prune”清理不再使用的Docker对象。 2. 检查Docker存储库:确保您正在使用可靠的Docker存储库,并检查是否存在所有必需的图层。 3. 重新下载Docker镜像:如果您确定问题是由于损坏的Docker镜像引起的,则可以尝试重新下载Docker镜像。 4. 更新Docker版本:如果您使用的是旧版Docker,则可能会出现此问题。尝试更新到最新版本的Docke
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依