上面的代码改进后出现WARNING:tensorflow:Model was constructed with shape (None, 224, 224, 3) for input KerasTensor(type_spec=TensorSpec(shape=(None, 224, 224, 3), dtype=tf.float32, name='input_5'), name='input_5', description="created by layer 'input_5'"), but it was called on an input with incompatible shape (None, 100, 125, 3).
时间: 2024-03-26 22:35:47 浏览: 128
tensorflow报错
这个警告是因为在构建模型时,我们定义了输入张量的形状为 (None, 224, 224, 3),但实际使用时输入张量的形状为 (None, 100, 125, 3),两者不匹配。这是因为我们将 MobileNetV2 模型的输入形状定义为 (224, 224, 3),而在新模型中我们定义了新的输入形状为 (100, 125, 3)。
虽然这个警告不会影响模型的训练和预测,但为了消除警告,我们可以将 MobileNetV2 模型的输入形状与新模型的输入形状匹配。具体来说,我们可以使用 `tf.keras.layers.experimental.preprocessing` 中的 `Resizing` 层将输入张量的大小调整为 (224, 224)。修改后的代码如下所示:
```
from tensorflow.keras import layers, models
from tensorflow.keras.layers.experimental.preprocessing import Resizing
# Define your new input layer with the desired shape
new_input = layers.Input(shape=(100, 125, 3))
# Load the MobileNetV2 model with the top layer removed
mobile = tf.keras.applications.MobileNetV2(input_shape=(224, 224, 3), include_top=False, weights='imagenet')
# Freeze the weights of the MobileNetV2 layers
for layer in mobile.layers:
layer.trainable = False
# Resize the input to match the input shape of the MobileNetV2 model
resized_input = Resizing(224, 224)(new_input)
# Get the output of the MobileNetV2 model
x = mobile(resized_input)
# Add a global average pooling layer and a dense layer for classification
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(128, activation='relu')(x)
predictions = layers.Dense(10, activation='softmax')(x)
# Create the new model
new_model = models.Model(inputs=new_input, outputs=predictions)
# Compile the new model
new_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Print the summary of the new model
new_model.summary()
```
在这个修改后的代码中,我们使用 `Resizing` 层将输入张量的大小调整为 (224, 224),然后将调整后的张量作为 MobileNetV2 模型的输入。这样可以保证输入形状的匹配,并消除警告。
阅读全文