用python写一个kmeans算法
时间: 2023-06-03 14:05:13 浏览: 92
基于python实现KMeans算法
好的,我可以为您提供关于Python编写kmeans算法的信息。Kmeans算法是一种常用的无监督学习聚类算法,可以将数据样本划分为指定数目的簇。以下是一个基本的实现:
```
import numpy as np
class KMeans:
def __init__(self, k=3, max_iter=100, random_state=0):
self.k = k
self.max_iter = max_iter
self.random_state = random_state
def fit(self, X):
rng = np.random.RandomState(self.random_state)
i = rng.permutation(X.shape[0])[:self.k]
self.centers = X[i]
for _ in range(self.max_iter):
clusters = [[] for _ in range(self.k)]
for x in X:
distances = np.linalg.norm(self.centers - x, axis=1)
cluster = np.argmin(distances)
clusters[cluster].append(x)
previous = self.centers.copy()
for i, cluster in enumerate(clusters):
if len(cluster) == 0:
continue
self.centers[i] = np.mean(cluster, axis=0)
if np.all(previous == self.centers):
break
def predict(self, X):
distances = np.linalg.norm(self.centers - X[:, np.newaxis], axis=2)
return np.argmin(distances, axis=1)
```
这是一个简化的KMeans实现。您可以将其用于您的项目中,并进一步改进算法以满足您的需求。希望这可以帮助您开始编写KMeans算法。
阅读全文