for i, (test, sample_submission) in enumerate(iter_test): # FEATURE ENGINEER TEST DATA df = feature_engineer(test) df = time_feature(df) # INFER TEST DATA # print(i) grp = test.level_group.values[0] a,b = limits[grp] for t in range(a,b): clf = model[f'{grp}_{t}'] #p = clf.predict(df[FEATURE].astype('float32'), prediction_type='Probability')[:,1] p = clf.predict_proba(df[FEATURE].astype('float32'))[:,1] mask = sample_submission.session_id.str.contains(f'q{t}') sample_submission.loc[mask,'correct'] = ( p > best_threshold ).astype("int") env.predict(sample_submission)
时间: 2024-04-01 22:35:37 浏览: 137
这段代码通常用于在Kaggle竞赛中进行测试数据的推理和结果提交。其中iter_test是一个生成器对象,用于逐个读取测试数据和提交数据。feature_engineer()和time_feature()是特征工程的函数,用于从测试数据中提取特征。grp是测试数据中的level_group特征的值,a和b是一个元组,表示该grp所包含的时间段的开始和结束。model是一个训练好的分类器模型字典,其中每个模型对应一个时间段。对于每个时间段t,通过model字典中对应的分类器模型clf,对测试数据进行推理,得到每个样本属于正类的概率p。通过best_threshold阈值将概率值转换为二分类标签,将结果写入sample_submission的correct列中。最后,通过env.predict()方法将sample_submission的结果提交到Kaggle服务器进行评测和排名。
相关问题
详细解释一下这段代码,每一句给出详细注解:sys.path.append('/kaggle/input') sys.path.append('/tmp') from imc23superglue.models.matching import Matching INPUT_ROOT = '/kaggle/input/image-matching-challenge-2023' DATA_ROOT = '/kaggle/data' OUTPUT_ROOT = '/kaggle/working' DEBUG = False datasets_scenes = [] sample_submission_df = pd.read_csv(f"{INPUT_ROOT}/sample_submission.csv") for _, r in sample_submission_df[['dataset', 'scene']].iterrows(): ds = f"{r.dataset}/{r.scene}" if ds not in datasets_scenes: datasets_scenes.append(ds) matching_name = 'SuperGlue' image_sizes = [1088] #### [1280, 1088, 1472] extra_matcher = None #'GS' extra_image_sizes = [] #[1024, 1280] USE_ROI = False ROI_SIZE = 1024 sim_th = None n_matches = 100 num_exhaustives = 7 #### 10 thresh_exhaustives = 3 #### 7 这个进行了修改,一个文件是3 一个是11 matching_config = { 'superpoint': { 'nms_radius': 2, ####4, 'keypoint_threshold': 0.02, #### 0.005, 'max_keypoints': -1, }, 'superglue': { 'weights': 'outdoor', 'sinkhorn_iterations': 5, #### 20, 'match_threshold': 0.05, ####0.2, } } matching_model = Matching(matching_config).cuda().half().eval()
这段代码主要是为了导入并配置图像匹配模型。下面是每一句的注释:
1. sys.path.append('/kaggle/input'):将/kaggle/input目录添加到系统路径中,以便能够导入该目录下的模块。
2. sys.path.append('/tmp'):将/tmp目录添加到系统路径中,以便能够导入该目录下的模块。
3. from imc23superglue.models.matching import Matching:从imc23superglue.models.matching模块中导入Matching类,用于执行图像匹配任务。
4. INPUT_ROOT = '/kaggle/input/image-matching-challenge-2023':设置输入数据的根目录。
5. DATA_ROOT = '/kaggle/data':设置数据处理后的根目录。
6. OUTPUT_ROOT = '/kaggle/working':设置输出结果的根目录。
7. DEBUG = False:设置是否启用调试模式。
8. datasets_scenes = []:创建一个空列表,用于存储数据集和场景。
9. sample_submission_df = pd.read_csv(f"{INPUT_ROOT}/sample_submission.csv"):读取样本提交文件,并将其存储为Pandas数据帧。
10. for _, r in sample_submission_df[['dataset', 'scene']].iterrows()::遍历样本提交数据帧中的每一行。
11. ds = f"{r.dataset}/{r.scene}":获取当前行的数据集和场景,并将它们合并为一个字符串。
12. if ds not in datasets_scenes::如果当前数据集和场景的字符串不在列表中,则执行以下操作。
13. datasets_scenes.append(ds):将当前数据集和场景的字符串添加到列表中。
14. matching_name = 'SuperGlue':设置图像匹配模型的名称为SuperGlue。
15. image_sizes = [1088]:设置图像的大小为1088像素。
16. extra_matcher = None:设置额外的匹配器为None。
17. extra_image_sizes = []:设置额外的图像大小列表为空。
18. USE_ROI = False:设置是否使用感兴趣区域(ROI)为False。
19. ROI_SIZE = 1024:设置ROI的大小为1024像素。
20. sim_th = None:设置相似度阈值为None。
21. n_matches = 100:设置最大匹配数为100。
22. num_exhaustives = 7:设置穷举次数为7。
23. thresh_exhaustives = 3:设置穷举阈值为3。
24. matching_config = {...}:创建一个字典,其中包含超级点(SuperPoint)和超级匹配(SuperGlue)的配置参数。
25. matching_model = Matching(matching_config).cuda().half().eval():创建一个图像匹配模型对象,使用上述配置参数,并将其迁移到GPU上。最后,将其设置为半精度模式,并将其设置为评估模式。
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split # 读取训练集和测试集数据 train_data = pd.read_csv(r'C:\ADULT\Titanic\train.csv') test_data = pd.read_csv(r'C:\ADULT\Titanic\test.csv') # 统计训练集和测试集缺失值数目 print(train_data.isnull().sum()) print(test_data.isnull().sum()) # 处理 Age, Fare 和 Embarked 缺失值 most_lists = ['Age', 'Fare', 'Embarked'] for col in most_lists: train_data[col] = train_data[col].fillna(train_data[col].mode()[0]) test_data[col] = test_data[col].fillna(test_data[col].mode()[0]) # 拆分 X, Y 数据并将分类变量 one-hot 编码 y_train_data = train_data['Survived'] features = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex', 'Embarked'] X_train_data = pd.get_dummies(train_data[features]) X_test_data = pd.get_dummies(test_data[features]) # 合并训练集 Y 和 X 数据,并创建乘客信息分类变量 train_data_selected = pd.concat([y_train_data, X_train_data], axis=1) print(train_data_selected) cate_features = ['Pclass', 'SibSp', 'Parch', 'Sex', 'Embarked', 'Age_category', 'Fare_category'] train_data['Age_category'] = pd.cut(train_data.Fare, bins=range(0, 100, 10)).astype(str) train_data['Fare_category'] = pd.cut(train_data.Fare, bins=list(range(-20, 110, 20)) + [800]).astype(str) print(train_data) # 统计各分类变量的分布并作出可视化呈现 plt.figure(figsize=(18, 16)) plt.subplots_adjust(hspace=0.3, wspace=0.3) for i, cate_feature in enumerate(cate_features): plt.subplot(7, 2, 2 * i + 1) sns.histplot(x=cate_feature, data=train_data, stat="density") plt.xlabel(cate_feature) plt.ylabel('Density') plt.subplot(7, 2, 2 * i + 2) sns.lineplot(x=cate_feature, y='Survived', data=train_data) plt.xlabel(cate_feature) plt.ylabel('Survived') plt.show() # 绘制点状的相关系数热图 plt.figure(figsize=(12, 8)) sns.heatmap(train_data_selected.corr(), vmin=-1, vmax=1, annot=True) plt.show() sourceRow = 891 output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.head() # 保存结果 output.to_csv('gender_submission.csv', index=False) print(output) train_X, test_X, train_y, test_y = train_test_split(X_train_data, y_train_data, train_size=0.8, random_state=42) print("随机森林分类结果") y_pred_train1 = train_data.predict(train_X) y_pred_test1 = train_data.predict(test_X) accuracy_train1 = accuracy_score(train_y, y_pred_train1) accuracy_test1 = accuracy_score(test_y, y_pred_test1) print("训练集——随机森林分类器准确率为:", accuracy_train1) print("测试集——随机森林分类器准确率为:", accuracy_train1)
在你的代码中,你正在尝试从 `train_data` 对象上调用一个名为 "predict" 的方法,而 `train_data` 实际上是一个 DataFrame 对象,该对象并没有 "predict" 方法。你应该使用你之前定义的随机森林分类器对象 `RandomForestClassifier` 来进行预测。请将以下代码:
```
y_pred_train1 = train_data.predict(train_X)
y_pred_test1 = train_data.predict(test_X)
```
更改为:
```
# 定义随机森林分类器对象
rfc = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=42)
# 在训练数据上拟合分类器
rfc.fit(train_X, train_y)
# 在训练集和测试集上进行预测
y_pred_train1 = rfc.predict(train_X)
y_pred_test1 = rfc.predict(test_X)
```
这将使用你之前定义的随机森林分类器对象 `rfc` 来进行预测。同时,你需要使用 `rfc.fit(train_X, train_y)` 在训练数据上拟合分类器,然后使用 `rfc.predict(train_X)` 和 `rfc.predict(test_X)` 在训练集和测试集上进行预测。
阅读全文