for i, (test, sample_submission) in enumerate(iter_test): # FEATURE ENGINEER TEST DATA df = feature_engineer(test) df = time_feature(df) # INFER TEST DATA # print(i) grp = test.level_group.values[0] a,b = limits[grp] for t in range(a,b): clf = model[f'{grp}_{t}'] #p = clf.predict(df[FEATURE].astype('float32'), prediction_type='Probability')[:,1] p = clf.predict_proba(df[FEATURE].astype('float32'))[:,1] mask = sample_submission.session_id.str.contains(f'q{t}') sample_submission.loc[mask,'correct'] = ( p > best_threshold ).astype("int") env.predict(sample_submission)

时间: 2024-04-01 16:35:37 浏览: 17
这段代码通常用于在Kaggle竞赛中进行测试数据的推理和结果提交。其中iter_test是一个生成器对象,用于逐个读取测试数据和提交数据。feature_engineer()和time_feature()是特征工程的函数,用于从测试数据中提取特征。grp是测试数据中的level_group特征的值,a和b是一个元组,表示该grp所包含的时间段的开始和结束。model是一个训练好的分类器模型字典,其中每个模型对应一个时间段。对于每个时间段t,通过model字典中对应的分类器模型clf,对测试数据进行推理,得到每个样本属于正类的概率p。通过best_threshold阈值将概率值转换为二分类标签,将结果写入sample_submission的correct列中。最后,通过env.predict()方法将sample_submission的结果提交到Kaggle服务器进行评测和排名。
相关问题

详细解释一下这段代码,每一句给出详细注解:sys.path.append('/kaggle/input') sys.path.append('/tmp') from imc23superglue.models.matching import Matching INPUT_ROOT = '/kaggle/input/image-matching-challenge-2023' DATA_ROOT = '/kaggle/data' OUTPUT_ROOT = '/kaggle/working' DEBUG = False datasets_scenes = [] sample_submission_df = pd.read_csv(f"{INPUT_ROOT}/sample_submission.csv") for _, r in sample_submission_df[['dataset', 'scene']].iterrows(): ds = f"{r.dataset}/{r.scene}" if ds not in datasets_scenes: datasets_scenes.append(ds) matching_name = 'SuperGlue' image_sizes = [1088] #### [1280, 1088, 1472] extra_matcher = None #'GS' extra_image_sizes = [] #[1024, 1280] USE_ROI = False ROI_SIZE = 1024 sim_th = None n_matches = 100 num_exhaustives = 7 #### 10 thresh_exhaustives = 3 #### 7 这个进行了修改,一个文件是3 一个是11 matching_config = { 'superpoint': { 'nms_radius': 2, ####4, 'keypoint_threshold': 0.02, #### 0.005, 'max_keypoints': -1, }, 'superglue': { 'weights': 'outdoor', 'sinkhorn_iterations': 5, #### 20, 'match_threshold': 0.05, ####0.2, } } matching_model = Matching(matching_config).cuda().half().eval()

这段代码主要是为了导入并配置图像匹配模型。下面是每一句的注释: 1. sys.path.append('/kaggle/input'):将/kaggle/input目录添加到系统路径中,以便能够导入该目录下的模块。 2. sys.path.append('/tmp'):将/tmp目录添加到系统路径中,以便能够导入该目录下的模块。 3. from imc23superglue.models.matching import Matching:从imc23superglue.models.matching模块中导入Matching类,用于执行图像匹配任务。 4. INPUT_ROOT = '/kaggle/input/image-matching-challenge-2023':设置输入数据的根目录。 5. DATA_ROOT = '/kaggle/data':设置数据处理后的根目录。 6. OUTPUT_ROOT = '/kaggle/working':设置输出结果的根目录。 7. DEBUG = False:设置是否启用调试模式。 8. datasets_scenes = []:创建一个空列表,用于存储数据集和场景。 9. sample_submission_df = pd.read_csv(f"{INPUT_ROOT}/sample_submission.csv"):读取样本提交文件,并将其存储为Pandas数据帧。 10. for _, r in sample_submission_df[['dataset', 'scene']].iterrows()::遍历样本提交数据帧中的每一行。 11. ds = f"{r.dataset}/{r.scene}":获取当前行的数据集和场景,并将它们合并为一个字符串。 12. if ds not in datasets_scenes::如果当前数据集和场景的字符串不在列表中,则执行以下操作。 13. datasets_scenes.append(ds):将当前数据集和场景的字符串添加到列表中。 14. matching_name = 'SuperGlue':设置图像匹配模型的名称为SuperGlue。 15. image_sizes = [1088]:设置图像的大小为1088像素。 16. extra_matcher = None:设置额外的匹配器为None。 17. extra_image_sizes = []:设置额外的图像大小列表为空。 18. USE_ROI = False:设置是否使用感兴趣区域(ROI)为False。 19. ROI_SIZE = 1024:设置ROI的大小为1024像素。 20. sim_th = None:设置相似度阈值为None。 21. n_matches = 100:设置最大匹配数为100。 22. num_exhaustives = 7:设置穷举次数为7。 23. thresh_exhaustives = 3:设置穷举阈值为3。 24. matching_config = {...}:创建一个字典,其中包含超级点(SuperPoint)和超级匹配(SuperGlue)的配置参数。 25. matching_model = Matching(matching_config).cuda().half().eval():创建一个图像匹配模型对象,使用上述配置参数,并将其迁移到GPU上。最后,将其设置为半精度模式,并将其设置为评估模式。

解释一下这段代码:for _, r in sample_submission_df[['dataset', 'scene']].iterrows()下划线在这里的作用是?

在这段代码中,下划线 `_` 通常用作一个占位符,表示一个变量或值不需要使用,仅用于占位,以便让代码更简洁易懂。 在这里,`for _, r in sample_submission_df[['dataset', 'scene']].iterrows()` 中的下划线 `_` 占据了一个变量的位置,表示我们不需要使用该行数据的索引,只需要对每一行的数据进行处理。 具体而言,该代码用于迭代 `sample_submission_df[['dataset', 'scene']]` 中的每一行,对于每一行数据,`_` 占据了它的索引位置,而 `r` 则表示该行数据。由于我们只需要对每一行的数据进行处理,而不需要使用该行数据的索引,因此使用 `_` 来占据该位置,使得代码更简洁易懂。

相关推荐

import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split # 读取训练集和测试集数据 train_data = pd.read_csv(r'C:\ADULT\Titanic\train.csv') test_data = pd.read_csv(r'C:\ADULT\Titanic\test.csv') # 统计训练集和测试集缺失值数目 print(train_data.isnull().sum()) print(test_data.isnull().sum()) # 处理 Age, Fare 和 Embarked 缺失值 most_lists = ['Age', 'Fare', 'Embarked'] for col in most_lists: train_data[col] = train_data[col].fillna(train_data[col].mode()[0]) test_data[col] = test_data[col].fillna(test_data[col].mode()[0]) # 拆分 X, Y 数据并将分类变量 one-hot 编码 y_train_data = train_data['Survived'] features = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex', 'Embarked'] X_train_data = pd.get_dummies(train_data[features]) X_test_data = pd.get_dummies(test_data[features]) # 合并训练集 Y 和 X 数据,并创建乘客信息分类变量 train_data_selected = pd.concat([y_train_data, X_train_data], axis=1) print(train_data_selected) cate_features = ['Pclass', 'SibSp', 'Parch', 'Sex', 'Embarked', 'Age_category', 'Fare_category'] train_data['Age_category'] = pd.cut(train_data.Fare, bins=range(0, 100, 10)).astype(str) train_data['Fare_category'] = pd.cut(train_data.Fare, bins=list(range(-20, 110, 20)) + [800]).astype(str) print(train_data) # 统计各分类变量的分布并作出可视化呈现 plt.figure(figsize=(18, 16)) plt.subplots_adjust(hspace=0.3, wspace=0.3) for i, cate_feature in enumerate(cate_features): plt.subplot(7, 2, 2 * i + 1) sns.histplot(x=cate_feature, data=train_data, stat="density") plt.xlabel(cate_feature) plt.ylabel('Density') plt.subplot(7, 2, 2 * i + 2) sns.lineplot(x=cate_feature, y='Survived', data=train_data) plt.xlabel(cate_feature) plt.ylabel('Survived') plt.show() # 绘制点状的相关系数热图 plt.figure(figsize=(12, 8)) sns.heatmap(train_data_selected.corr(), vmin=-1, vmax=1, annot=True) plt.show() sourceRow = 891 output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.head() # 保存结果 output.to_csv('gender_submission.csv', index=False) print(output) train_X, test_X, train_y, test_y = train_test_split(X_train_data, y_train_data, train_size=0.8, random_state=42) print("随机森林分类结果") y_pred_train1 = train_data.predict(train_X) y_pred_test1 = train_data.predict(test_X) accuracy_train1 = accuracy_score(train_y, y_pred_train1) accuracy_test1 = accuracy_score(test_y, y_pred_test1) print("训练集——随机森林分类器准确率为:", accuracy_train1) print("测试集——随机森林分类器准确率为:", accuracy_train1)

介绍一下以下代码的逻辑 # data file path train_raw_path='./data/tianchi_fresh_comp_train_user.csv' train_file_path = './data/preprocessed_train_user.csv' item_file_path='./data/tianchi_fresh_comp_train_item.csv' #offline_train_file_path = './data/ccf_data_revised/ccf_offline_stage1_train.csv' #offline_test_file_path = './data/ccf_data_revised/ccf_offline_stage1_test_revised.csv' # split data path #active_user_offline_data_path = './data/data_split/active_user_offline_record.csv' #active_user_online_data_path = './data/data_split/active_user_online_record.csv' #offline_user_data_path = './data/data_split/offline_user_record.csv' #online_user_data_path = './data/data_split/online_user_record.csv' train_path = './data/data_split/train_data/' train_feature_data_path = train_path + 'features/' train_raw_data_path = train_path + 'raw_data.csv' #train_cleanedraw_data_path=train_path+'cleanedraw_data.csv' train_subraw_data_path=train_path+'subraw_data.csv' train_dataset_path = train_path + 'dataset.csv' train_subdataset_path=train_path+'subdataset.csv' train_raw_online_data_path = train_path + 'raw_online_data.csv' validate_path = './data/data_split/validate_data/' validate_feature_data_path = validate_path + 'features/' validate_raw_data_path = validate_path + 'raw_data.csv' #validate_cleaneraw_data_path=validate_path+'cleanedraw_data.csv' validate_dataset_path = validate_path + 'dataset.csv' validate_raw_online_data_path = validate_path + 'raw_online_data.csv' predict_path = './data/data_split/predict_data/' predict_feature_data_path = predict_path + 'features/' predict_raw_data_path = predict_path + 'raw_data.csv' predict_dataset_path = predict_path + 'dataset.csv' predict_raw_online_data_path = predict_path + 'raw_online_data.csv' # model path model_path = './data/model/model' model_file = '/model' model_dump_file = '/model_dump.txt' model_fmap_file = '/model.fmap' model_feature_importance_file = '/feature_importance.png' model_feature_importance_csv = '/feature_importance.csv' model_train_log = '/train.log' model_params = '/param.json' val_diff_file = '/val_diff.csv' # submission path submission_path = './data/submission/submission' submission_hist_file = '/hist.png' submission_file = '/tianchi_mobile_recommendation_predict.csv' # raw field name user_label = 'user_id' item_label = 'item_id' action_label = 'behavior_type' user_geohash_label='user_geohash' category_label='item_category' action_time_label='time' probability_consumed_label = 'Probability' # global values consume_time_limit = 15 train_feature_start_time = '20141119' train_feature_end_time = '20141217' train_dataset_time = '20141218' #train_dataset_end_time = '20141218' validate_feature_start_time = '20141118' validate_feature_end_time = '20141216' validate_dataset_time = '20141217' #validate_dataset_end_time = '20160514' predict_feature_start_time = '20141120' predict_feature_end_time = '20141218' predict_dataset_time = '20141219' #predict_dataset_end_time = '20160731'

详细解释一下这段代码,每一句给出详细注解:results_df = pd.DataFrame(columns=['image_path', 'dataset', 'scene', 'rotation_matrix', 'translation_vector']) for dataset_scene in tqdm(datasets_scenes, desc='Running pipeline'): dataset, scene = dataset_scene.split('/') img_dir = f"{INPUT_ROOT}/{'train' if DEBUG else 'test'}/{dataset}/{scene}/images" if not os.path.exists(img_dir): continue feature_dir = f"{DATA_ROOT}/featureout/{dataset}/{scene}" os.system(f"rm -rf {feature_dir}") os.makedirs(feature_dir) fnames = sorted(glob(f"{img_dir}/*")) print('fnames',len(fnames)) # Similarity pipeline if sim_th: index_pairs, h_w_exif = get_image_pairs_filtered(similarity_model, fnames=fnames, sim_th=sim_th, min_pairs=20, all_if_less=20) else: index_pairs, h_w_exif = get_img_pairs_all(fnames=fnames) # Matching pipeline matching_pipeline(matching_model=matching_model, fnames=fnames, index_pairs=index_pairs, feature_dir=feature_dir) # Colmap pipeline maps = colmap_pipeline(img_dir, feature_dir, h_w_exif=h_w_exif) # Postprocessing results = postprocessing(maps, dataset, scene) # Create submission for fname in fnames: image_id = '/'.join(fname.split('/')[-4:]) if image_id in results: R = results[image_id]['R'].reshape(-1) T = results[image_id]['t'].reshape(-1) else: R = np.eye(3).reshape(-1) T = np.zeros((3)) new_row = pd.DataFrame({'image_path': image_id, 'dataset': dataset, 'scene': scene, 'rotation_matrix': arr_to_str(R), 'translation_vector': arr_to_str(T)}, index=[0]) results_df = pd.concat([results_df, new_row]).reset_index(drop=True)

请详细解释一下这段代码,每一句给上相应的详细注解:sub['t'] = 0 submission = [] for f in test: df = pd.read_csv(f) df.set_index('Time', drop=True, inplace=True) df['Id'] = f.split('/')[-1].split('.')[0] # df = df.fillna(0).reset_index(drop=True) df['Time_frac']=(df.index/df.index.max()).values#currently the index of data is actually "Time" df = pd.merge(df, tasks[['Id','t_kmeans']], how='left', on='Id').fillna(-1) # df = pd.merge(df, subjects[['Id','s_kmeans']], how='left', on='Id').fillna(-1) df = pd.merge(df, metadata_complex[['Id','Subject']+['Visit','Test','Medication','s_kmeans']], how='left', on='Id').fillna(-1) df_feats = fc.calculate(df, return_df=True, include_final_window=True, approve_sparsity=True, window_idx="begin") df = df.merge(df_feats, how="left", left_index=True, right_index=True) df.fillna(method="ffill", inplace=True) # res = pd.DataFrame(np.round(reg.predict(df[cols]).clip(0.0,1.0),3), columns=pcols) res_vals=[] for i_fold in range(N_FOLDS): res_val=np.round(regs[i_fold].predict(df[cols]).clip(0.0,1.0),3) res_vals.append(np.expand_dims(res_val,axis=2)) res_vals=np.mean(np.concatenate(res_vals,axis=2),axis=2) res = pd.DataFrame(res_vals, columns=pcols) df = pd.concat([df,res], axis=1) df['Id'] = df['Id'].astype(str) + '_' + df.index.astype(str) submission.append(df[scols]) submission = pd.concat(submission) submission = pd.merge(sub[['Id']], submission, how='left', on='Id').fillna(0.0) submission[scols].to_csv('submission.csv', index=False)

最新推荐

recommend-type

GP卡片规范_v2[1].2(CN).doc

8.2.2.2.2 CVM状态INVALID_SUBMISSION 54 8.2.2.2.3 CVM状态VALIDATED 54 8.2.2.2.4 CVM状态BLOCKED 55 8.2.2.3 CVM格式 55 9 卡片和应用的管理 56 9.1 卡片内容管理 56 9.1.1 概述 56 9.1.2 对OPEN的要求 56 9.1.3 ...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性

![MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性](https://picx.zhimg.com/80/v2-8132d9acfebe1c248865e24dc5445720_1440w.webp?source=1def8aca) # 1. MATLAB结构体基础** MATLAB结构体是一种数据结构,用于存储和组织相关数据。它由一系列域组成,每个域都有一个名称和一个值。结构体提供了对数据的灵活访问和管理,使其成为组织和处理复杂数据集的理想选择。 MATLAB中创建结构体非常简单,使用struct函数即可。例如: ```matlab myStruct
recommend-type

详细描述一下STM32F103C8T6怎么与DHT11连接

STM32F103C8T6可以通过单总线协议与DHT11连接。连接步骤如下: 1. 将DHT11的VCC引脚连接到STM32F103C8T6的5V电源引脚; 2. 将DHT11的GND引脚连接到STM32F103C8T6的GND引脚; 3. 将DHT11的DATA引脚连接到STM32F103C8T6的GPIO引脚,可以选择任一GPIO引脚,需要在程序中配置; 4. 在程序中初始化GPIO引脚,将其设为输出模式,并输出高电平,持续至少18ms,以激活DHT11; 5. 将GPIO引脚设为输入模式,等待DHT11响应,DHT11会先输出一个80us的低电平,然后输出一个80us的高电平,
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB结构体与数据库交互:无缝连接数据存储与处理,实现数据管理自动化

![MATLAB结构体与数据库交互:无缝连接数据存储与处理,实现数据管理自动化](https://ww2.mathworks.cn/products/database/_jcr_content/mainParsys/band_1749659463_copy/mainParsys/columns_copy/6d5289a2-72ce-42a8-a475-d130cbebee2e/image_copy_2009912310.adapt.full.medium.jpg/1709291769739.jpg) # 1. MATLAB结构体与数据库交互概述** MATLAB结构体与数据库交互是一种强大的
recommend-type

Link your Unity

project to C# script in Visual Studio. Can you provide me with some guidance on this? Yes, I can definitely help you with that! To link your Unity project to C# script in Visual Studio, you first need to make sure that you have both Unity and Visual Studio installed on your computer. Then, you can
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。