请提供一段python代码:基于ski-opt GA的遗传算法,传入20组gamma和nu参数进行遗传算法优化,适应度函数已知
时间: 2024-05-04 10:15:54 浏览: 168
使用遗传算法执行参数优化附python代码.zip
以下是一段基于skopt库的遗传算法代码示例,其中使用了 GA (genetic algorithm) 优化器,并传入 20 组 gamma 和 nu 参数,同时假设适应度函数为 "fitness_func"。
```
from skopt import gp_minimize
from skopt.utils import use_named_args
from skopt.space import Real, Space
from skopt.plots import plot_convergence
import numpy as np
# Define the search space
space = Space([
Real(0.1, 1.0, name='gamma'),
Real(0.1, 1.0, name='nu')
])
# Define the fitness function
def fitness_func(x):
# Compute the fitness based on x, which contains the gamma and nu values
# ...
# Define the optimization objective with genetic algorithm
@use_named_args(space)
def objective(**params):
return fitness_func([params['gamma'], params['nu']])
# Set up the genetic algorithm optimizer
res_gp = gp_minimize(objective, space, n_calls=100, n_random_starts=10,
acq_func='EI', xi=0.01, kappa=1.96, x0=None,
y0=None, random_state=None, verbose=True)
# Print the results
print("Best fitness value: {0:.4f}".format(res_gp.fun))
print("Best gamma and nu values: {}".format(res_gp.x))
# Plot the convergence of the optimization
fig, ax = plt.subplots()
ax.plot(np.minimum.accumulate(res_gp.func_vals), 'b-', label='GA')
ax.set_xlabel('Iteration')
ax.set_ylabel('Best function value')
plt.show()
```
注意:此代码示例只是演示如何使用 skopt 库中的遗传算法优化器,并传入参数。适应度函数 "fitness_func" 需要由用户自己定义,并根据具体情况编写。
阅读全文