传统方法表情识别,基于fer2013,用python定义一个功能全面的训练SVM分类器函数
时间: 2024-06-08 10:10:37 浏览: 128
好的,我可以为您提供一个基于fer2013数据集,使用Python定义的训练SVM分类器函数。
首先,您需要下载fer2013数据集。可以从以下链接下载:
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data
下载后,您需要将数据集解压缩并将其放在一个名为“fer2013”的文件夹中。
接下来,您需要安装所需的Python包。您可以使用以下命令安装:
```
pip install numpy pandas matplotlib opencv-python sklearn
```
现在您可以使用以下代码定义一个训练SVM分类器的函数:
```python
import numpy as np
import pandas as pd
import cv2
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
def train_svm():
# Load dataset
data = pd.read_csv('fer2013/fer2013.csv')
# Preprocess data
pixels = data['pixels'].tolist()
images = np.array([np.fromstring(pixel, dtype=int, sep=' ').reshape(48, 48) for pixel in pixels])
labels = np.array(data['emotion'])
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)
# Resize images to 64x64
X_train_resized = np.array([cv2.resize(image, (64, 64)) for image in X_train])
X_test_resized = np.array([cv2.resize(image, (64, 64)) for image in X_test])
# Flatten images
X_train_flattened = X_train_resized.reshape(X_train_resized.shape[0], -1)
X_test_flattened = X_test_resized.reshape(X_test_resized.shape[0], -1)
# Train SVM classifier
svm = SVC(kernel='linear', C=1.0, random_state=42)
svm.fit(X_train_flattened, y_train)
# Test SVM classifier
y_pred = svm.predict(X_test_flattened)
accuracy = accuracy_score(y_test, y_pred)
return svm, accuracy
```
此函数将读取fer2013数据集,并使用SVM分类器对表情图像进行分类。它将返回训练好的SVM分类器以及在测试集上的准确度。
您可以使用以下代码来调用此函数并训练SVM分类器:
```python
svm_classifier, accuracy = train_svm()
print('Accuracy:', accuracy)
```
请注意,此函数可能需要一些时间才能完成训练。如果您想加快训练过程,您可以尝试使用更小的数据集或减少图像的大小。
阅读全文
相关推荐


















