ValueError: non-broadcastable output operand with shape (110,1) doesn't match the broadcast shape (110,4)
时间: 2024-01-24 21:04:11 浏览: 171
这个错误通常是由于数组形状不兼容而导致的。在您的代码中,似乎您正在尝试将形状为(110,1)的数组与形状为(110,4)的数组进行广播操作,从而导致此错误。
您可以尝试使用 `reshape()` 方法来重新调整数组的形状,以确保它们具有兼容的形状。例如,如果您想将形状为(110,1)的数组转换为形状为(110,4)的数组,可以使用以下代码:
```python
train_predict = np.tile(train_predict, (1, 4))
```
这将使用 `tile()` 函数将 `train_predict` 数组沿列方向复制 4 次,以便它的形状变为(110,4)。然后,您可以再次尝试执行广播操作。
相关问题
ValueError: non-broadcastable output operand with shape (1640,1) doesn't match the broadcast shape (1640,4)
This error occurs when you are trying to perform a mathematical operation that cannot be broadcasted to the output shape. In this case, the output operand has shape (1640,1) but the broadcast shape is (1640,4).
To fix this error, you can reshape the output operand to match the broadcast shape using the numpy.reshape() function. For example:
```python
import numpy as np
# create a matrix with shape (1640, 4)
a = np.ones((1640, 4))
# create an output operand with shape (1640, 1)
b = np.ones((1640, 1))
# reshape the output operand to match the broadcast shape
b = b.reshape(1640, 4)
# perform the mathematical operation
c = a + b
```
In this example, we reshape the output operand `b` to have shape (1640, 4) using the `reshape()` function. Now, we can perform the mathematical operation without getting the ValueError.
ValueError: non-broadcastable output operand with shape (15,1) doesn't match the broadcast shape (15,2)
这个错误通常出现在使用numpy的广播功能时,输出的形状与预期不符合。在这个例子中,输出的形状是(15,1),但是广播形状是(15,2),两者不匹配。
可能的原因是你正在尝试使用广播时,数组的形状不兼容。你可以检查一下你的数组形状是否正确,并且尝试使用reshape函数将数组形状重新调整以匹配广播形状。
另外,你可以尝试使用np.newaxis将维度扩展为2,例如:
```
import numpy as np
a = np.random.rand(15, 1)
b = np.random.rand(15, 2)
c = a + b[:, np.newaxis]
```
这样,a的形状就变成了(15,1,1),b的形状就变成了(15,1,2),可以进行正确的广播计算。
阅读全文