张正友相机标定opencv实现

时间: 2023-05-09 19:03:10 浏览: 357
张正友相机标定是一种针对相机镜头畸变问题的标定方法,它可以通过采集多个不同角度和位置的图片,通过提取图片中的特征点,建立相机与图像之间的映射关系,进而完成相机的畸变校正。OpenCV是一款开源的计算机视觉库,其中包含了丰富的图像处理和计算机视觉算法,包括张正友相机标定算法。 实现张正友相机标定,首先需要准备图像数据集合,数据集合应覆盖整个视场范围,每张图片需要经过不同的角度和方向拍摄。然后,需要使用OpenCV提供的特征提取函数,如SIFT、SURF等,提取每张图片中的特征点和特征描述子,进而匹配各个视角下的特征点,利用匹配结果来估计相机参数矩阵。 在得到相机参数矩阵后,还需要对图像进行畸变校正。我们可以使用OpenCV提供的undistort函数对每张图片进行校正,得到校正后的图片。根据校正后的图片和相机参数矩阵,可以得到相机的畸变系数,进而实现相机校正。最终,我们可以使用校正后的图片来提高图像处理的精度和效果。 总之,张正友相机标定是一种常用的相机标定方法,通过OpenCV实现可以快速完成图像畸变校正,提高计算机视觉应用的精度和效率。
相关问题

张正友相机标定Opencv实现

张正友相机标定是一种常用的相机标定方法,可以用于求解相机内参和畸变参数。下面是使用OpenCV实现的步骤: 1. 准备标定板:使用一个标定板,比如黑白棋盘格,打印到A4纸或者其他材料上。 2. 拍摄标定板:在不同姿态下拍摄标定板的图片,要求每张图片中标定板占据整个画面,且拍摄方向不变。 3. 提取角点:使用OpenCV函数`findChessboardCorners()`提取每张图片中标定板的角点坐标。 4. 进行标定:使用OpenCV函数`calibrateCamera()`进行相机标定,得到相机内参矩阵和畸变参数。 5. 验证标定结果:使用OpenCV函数`undistort()`对标定板图片进行畸变矫正,验证标定结果是否正确。 下面是使用Python实现的示例代码: ```python import numpy as np import cv2 # 准备标定板 objp = np.zeros((6*8,3), np.float32) objp[:,:2] = np.mgrid[0:8,0:6].T.reshape(-1,2) # 存储标定板角点坐标 objpoints = [] imgpoints = [] # 读取标定板图片 images = glob.glob('calib/*.jpg') # 提取角点 for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, (8,6),None) if ret == True: objpoints.append(objp) imgpoints.append(corners) # 进行标定 ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None) # 验证标定结果 img = cv2.imread('calib/test.jpg') h, w = img.shape[:2] newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h)) dst = cv2.undistort(img, mtx, dist, None, newcameramtx) # 显示结果 cv2.imshow('Original', img) cv2.imshow('Undistorted', dst) cv2.waitKey(0) cv2.destroyAllWindows() ``` 以上就是使用OpenCV实现张正友相机标定的基本步骤。

张正友相机标定opencv实现(完整程序+棋盘图)实例源码

张正友相机标定是一种用于计算机视觉领域中的相机标定方法,利用棋盘图像来确定相机内外参数。OpenCV是一个常用的开源计算机视觉库,支持多种相机标定方法。下面是一个实现张正友相机标定OpenCV的完整程序棋盘图实例的源码。 ```python import numpy as np import cv2 import glob square_size = 1.0 # 棋盘格尺寸,单位毫米 pattern_size = (8, 6) # 棋盘格的行列数 images = glob.glob("images/*.jpg") #图像路径 # 准备标定板的“物理坐标” objp = np.zeros((np.prod(pattern_size), 3), np.float32) objp[:,:2] = np.indices(pattern_size).T.reshape(-1, 2) # x, y 坐标 objp *= square_size # 存储 3D 坐标和对应的 2D 坐标 objpoints = [] imgpoints = [] for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 获得棋盘格角点 ret, corners = cv2.findChessboardCorners(gray, pattern_size) if ret: objpoints.append(objp) # 改善角点的坐标,提高精度 corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) imgpoints.append(corners2) # 在图像上标定角点并显示结果 img = cv2.drawChessboardCorners(img, pattern_size, corners2, ret) cv2.imshow('img', img) cv2.waitKey(500) cv2.destroyAllWindows() # 获取相机的内外参数 ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) print("相机内参数:") print(mtx) print("相机畸变参数:") print(dist) ``` 首先,我们定义了一个棋盘格的大小和行列数,在“物理坐标”中确定棋盘格的每个角点的位置。然后,从图像文件夹中加载图像,使用OpenCV的findChessboardCorners函数获得棋盘格角点。接下来,通过cornerSubPix函数对角点坐标进行改善,提高精度。最终,我们使用calibrateCamera函数对图像进行相机标定,得到相机的内外参数。 这个程序使用了OpenCV的主要标定函数和几个辅助函数,包括findChessboardCorners,cornerSubPix和calibrateCamera。在执行程序之前,需要准备一组棋盘格图像,并将它们放在一个图像文件夹中。运行程序后,相机的内参数和畸变参数将被输出到控制台上。 使用OpenCV实现张正友相机标定可以高精度的获取到相机的内外参数,可以在计算机视觉、机器人、增强现实等领域得到广泛应用。
阅读全文

相关推荐

最新推荐

recommend-type

Python opencv相机标定实现原理及步骤详解

张正友相机标定算法是常用的标定方法,它基于单应性矩阵H的计算。通过对应点对找到H,进而求解内参数矩阵K、旋转矩阵R和平移向量T。具体步骤如下: 1. 求解相机内参数:利用标定板上的角点坐标,计算单应性矩阵H,...
recommend-type

YOLOv3-训练-修剪.zip

YOLOv3-训练-修剪YOLOv3-训练-修剪的Python3.6、Pytorch 1.1及以上,numpy>1.16,tensorboard=1.13以上YOLOv3的训练参考[博客](https://blog.csdn.net/qq_34795071/article/details/90769094 )基于的ultralytics/yolov3代码大家也可以看下这个https://github.com/tanluren/yolov3-channel-and-layer-pruning正常训练(基线)python train.py --data data/VHR.data --cfg cfg/yolov3.cfg --weights/yolov3.weights --epochs 100 --batch-size 32 #后面的epochs自行更改 直接加载weights可以更好的收敛剪枝算法介绍本代码基于论文Learning Efficient Convolutional Networks Through Network Slimming (ICCV
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001