找出DCGAN中与神经网络训练过程的五个步骤相对应的代码。
时间: 2024-02-23 07:59:23 浏览: 142
训练神经网络的五大算法,算法数据结构
DCGAN中与神经网络训练过程的五个步骤相对应的代码如下:
1. 初始化生成器和判别器的权重和偏置项:
```python
def initialize_weights(model):
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d, nn.Linear)):
nn.init.normal_(m.weight, 0.0, 0.02)
nn.init.constant_(m.bias, 0)
```
2. 输入真实图像并将其传入判别器中进行前向传播:
```python
real_images = data.to(device)
real_labels = torch.ones(batch_size, 1).to(device)
outputs = discriminator(real_images).squeeze()
real_loss = criterion(outputs, real_labels)
```
3. 使用生成器生成假图像,并将其传入判别器中进行前向传播:
```python
z = torch.randn(batch_size, nz, 1, 1, device=device)
fake_images = generator(z)
fake_labels = torch.zeros(batch_size, 1).to(device)
outputs = discriminator(fake_images.detach()).squeeze()
fake_loss = criterion(outputs, fake_labels)
```
4. 计算判别器的损失函数并进行反向传播:
```python
d_loss = real_loss + fake_loss
d_loss.backward()
optimizerD.step()
```
5. 计算生成器的损失函数并进行反向传播:
```python
z = torch.randn(batch_size, nz, 1, 1, device=device)
fake_images = generator(z)
outputs = discriminator(fake_images).squeeze()
g_loss = criterion(outputs, real_labels)
g_loss.backward()
optimizerG.step()
```
阅读全文