动态规划策略实现最长公共子序列。 最长公共子序列问题:对两个类型相同的序列(输入),用动态规划方法计算他们的最长公共子序列,并输出最长公共子序列的长度值。

时间: 2023-08-25 20:14:16 浏览: 78
好的,这是一个经典的动态规划问题。我可以给你讲一下具体的实现过程。 我们假设要求的两个序列分别为S1和S2,它们的长度分别为n和m。我们用一个二维数组dp来表示S1和S2的最长公共子序列的长度,其中dp[i][j]表示S1的前i个字符和S2的前j个字符的最长公共子序列长度。 接下来,我们可以考虑状态转移方程。我们可以根据S1和S2的第i和j个字符是否相同来进行分类讨论: 1. 如果S1的第i个字符和S2的第j个字符相同,那么它们一定是最长公共子序列的一部分,因此dp[i][j] = dp[i-1][j-1] + 1。 2. 如果S1的第i个字符和S2的第j个字符不相同,那么它们不可能同时出现在最长公共子序列中。因此,我们可以选择不使用S1的第i个字符或者不使用S2的第j个字符,取两种情况中的最大值作为dp[i][j]的值,即dp[i][j] = max(dp[i-1][j], dp[i][j-1])。 最后,dp[n][m]就是S1和S2的最长公共子序列的长度。 如果你需要输出最长公共子序列本身,我们可以在计算dp数组的同时,记录每个dp[i][j]的值是从哪个状态转移而来的,然后根据这些信息回溯出最长公共子序列。 实际上,这个问题的时间复杂度为O(nm),空间复杂度也为O(nm)。
相关问题

Python动态规划策略实现最长公共子序列。最长公共子序列问题:对两个类型相同的序列(输入),用动态规划方法计算他们的最长公共子序列,并输出最长公共子序列和最长公共子序列的长度值。

好的,这是一个经典的动态规划问题。我们可以使用一个二维数组dp[i][j]表示序列1的前i个字符和序列2的前j个字符的最长公共子序列的长度。具体实现步骤如下: 1. 初始化dp数组,dp[0][j]和dp[i][0]均为0,表示空序列的最长公共子序列长度为0。 2. 遍历序列1和序列2,如果当前字符相等,则dp[i][j] = dp[i-1][j-1]+1;否则,dp[i][j] = max(dp[i-1][j], dp[i][j-1]),即选择序列1前i-1个字符和序列2前j个字符的最长公共子序列长度,或者选择序列1前i个字符和序列2前j-1个字符的最长公共子序列长度。 3. 最后,根据dp数组反向回溯,找到最长公共子序列。 下面是Python代码实现: ```python def lcs(s1, s2): m, n = len(s1), len(s2) dp = [[0] * (n+1) for _ in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): if s1[i-1] == s2[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) res = "" i, j = m, n while i > 0 and j > 0: if s1[i-1] == s2[j-1]: res = s1[i-1] + res i -= 1 j -= 1 elif dp[i-1][j] > dp[i][j-1]: i -= 1 else: j -= 1 return res, dp[m][n] ``` 这个函数接受两个字符串作为参数s1和s2,返回它们的最长公共子序列和最长公共子序列的长度值。

动态规划策略实现最长公共子序列python

最长公共子序列问题是一种经典的动态规划问题,在此为您提供 Python 代码实现: ```python def lcs(str1, str2): m = len(str1) n = len(str2) # 创建一个 m+1 行,n+1列的二维数组,用于保存子问题的最优解 dp = [[0] * (n+1) for _ in range(m+1)] # 计算子问题的最优解 for i in range(1, m+1): for j in range(1, n+1): if str1[i-1] == str2[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) # 返回最长公共子序列的长度以及最长公共子序列本身 return dp[m][n], get_lcs(dp, str1, str2) def get_lcs(dp, str1, str2): i, j = len(str1), len(str2) lcs_str = '' while i > 0 and j > 0: if str1[i-1] == str2[j-1]: lcs_str = str1[i-1] + lcs_str i -= 1 j -= 1 elif dp[i-1][j] >= dp[i][j-1]: i -= 1 else: j -= 1 return lcs_str ``` 这个代码中,我们首先创建一个二维数组 dp 来保存子问题的最优解。然后,我们使用两个嵌套的循环遍历 str1 和 str2 中的每个字符,并计算子问题的最优解。最后,我们返回最长公共子序列的长度以及最长公共子序列本身。 在计算子问题的最优解时,我们会根据当前字符是否相等来进行判断。如果相等,那么最长公共子序列的长度应该加上 1,同时我们需要继续考虑 str1 和 str2 中下一个字符的匹配。如果不相等,我们就需要在 str1 和 str2 中分别跳过一个字符,然后继续考虑下一个字符的匹配。 最后,我们使用一个 while 循环来重建最长公共子序列。我们从 dp[m][n] 开始,一步步往回找到最长公共子序列的每个字符,并将它们添加到 lcs_str 中。
阅读全文

相关推荐

最新推荐

recommend-type

Java基于动态规划法实现求最长公共子序列及最长公共子字符串示例

Java中的动态规划法被广泛应用于解决复杂的问题,如求解最长公共子序列(Longest Common Subsequence, LCS)和最长公共子字符串(Longest Common Substring, LSS)。这两个概念在计算机科学中尤其是在字符串处理和...
recommend-type

c++语言写最长公共子序列问题

C++ 语言写最长公共子序列问题是动态规划的经典问题之一,通过比较两个序列,找出它们之间的公共子序列,并输出该公共子序列的长度和内容。本问题有很多实际应用,并且在计算生物学等领域中有重要的研究价值。
recommend-type

最长公共子序列(动态规划)报告.doc

总的来说,最长公共子序列问题的动态规划解决方案提供了一种高效的方法来找出两个序列之间的最长共享部分,这对于比较和分析序列数据至关重要。通过实验报告,我们可以深入理解动态规划的精髓,以及如何将理论知识...
recommend-type

最长公共子序列实验报告

总之,最长公共子序列问题可以通过动态规划有效地解决,通过构建并填充c和b数组,不仅可以得到LCS的长度,还可以重建LCS本身。这种算法的时间复杂度为O(m * n),显著优于指数级的穷举搜索方法。
recommend-type

VB程序实例-运用Mschat图表显示数据(方法二).zip

VB程序实例-运用Mschat图表显示数据(方法二).zip
recommend-type

StarModAPI: StarMade 模组开发的Java API工具包

资源摘要信息:"StarModAPI: StarMade 模组 API是一个用于开发StarMade游戏模组的编程接口。StarMade是一款开放世界的太空建造游戏,玩家可以在游戏中自由探索、建造和战斗。该API为开发者提供了扩展和修改游戏机制的能力,使得他们能够创建自定义的游戏内容,例如新的星球类型、船只、武器以及各种游戏事件。 此API是基于Java语言开发的,因此开发者需要具备一定的Java编程基础。同时,由于文档中提到的先决条件是'8',这很可能指的是Java的版本要求,意味着开发者需要安装和配置Java 8或更高版本的开发环境。 API的使用通常需要遵循特定的许可协议,文档中提到的'在许可下获得'可能是指开发者需要遵守特定的授权协议才能合法地使用StarModAPI来创建模组。这些协议通常会规定如何分发和使用API以及由此产生的模组。 文件名称列表中的"StarModAPI-master"暗示这是一个包含了API所有源代码和文档的主版本控制仓库。在这个仓库中,开发者可以找到所有的API接口定义、示例代码、开发指南以及可能的API变更日志。'Master'通常指的是一条分支的名称,意味着该分支是项目的主要开发线,包含了最新的代码和更新。 开发者在使用StarModAPI时应该首先下载并解压文件,然后通过阅读文档和示例代码来了解如何集成和使用API。在编程实践中,开发者需要关注API的版本兼容性问题,确保自己编写的模组能够与StarMade游戏的当前版本兼容。此外,为了保证模组的质量,开发者应当进行充分的测试,包括单人游戏测试以及多人游戏环境下的测试,以确保模组在不同的使用场景下都能够稳定运行。 最后,由于StarModAPI是针对特定游戏的模组开发工具,开发者在创建模组时还需要熟悉StarMade游戏的内部机制和相关扩展机制。这通常涉及到游戏内部数据结构的理解、游戏逻辑的编程以及用户界面的定制等方面。通过深入学习和实践,开发者可以利用StarModAPI创建出丰富多样的游戏内容,为StarMade社区贡献自己的力量。" 由于题目要求必须输出大于1000字的内容,上述内容已经满足此要求。如果需要更加详细的信息或者有其他特定要求,请提供进一步的说明。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据清洗术:Poisson分布下的异常值检测法

![R语言数据清洗术:Poisson分布下的异常值检测法](https://ucc.alicdn.com/images/user-upload-01/img_convert/a12c695f8b68033fc45008ede036b653.png?x-oss-process=image/resize,s_500,m_lfit) # 1. R语言与数据清洗概述 数据清洗作为数据分析的初级阶段,是确保后续分析质量的关键。在众多统计编程语言中,R语言因其强大的数据处理能力,成为了数据清洗的宠儿。本章将带您深入了解数据清洗的含义、重要性以及R语言在其中扮演的角色。 ## 1.1 数据清洗的重要性
recommend-type

设计一个简易的Python问答程序

设计一个简单的Python问答程序,我们可以使用基本的命令行交互,结合字典或者其他数据结构来存储常见问题及其对应的答案。下面是一个基础示例: ```python # 创建一个字典存储问题和答案 qa_database = { "你好": "你好!", "你是谁": "我是一个简单的Python问答程序。", "你会做什么": "我可以回答你关于Python的基础问题。", } def ask_question(): while True: user_input = input("请输入一个问题(输入'退出'结束):")
recommend-type

PHP疫情上报管理系统开发与数据库实现详解

资源摘要信息:"本资源是一个PHP疫情上报管理系统,包含了源码和数据库文件,文件编号为170948。该系统是为了适应疫情期间的上报管理需求而开发的,支持网络员用户和管理员两种角色进行数据的管理和上报。 管理员用户角色主要具备以下功能: 1. 登录:管理员账号通过直接在数据库中设置生成,无需进行注册操作。 2. 用户管理:管理员可以访问'用户管理'菜单,并操作'管理员'和'网络员用户'两个子菜单,执行增加、删除、修改、查询等操作。 3. 更多管理:通过点击'更多'菜单,管理员可以管理'评论列表'、'疫情情况'、'疫情上报管理'、'疫情分类管理'以及'疫情管理'等五个子菜单。这些菜单项允许对疫情信息进行增删改查,对网络员提交的疫情上报进行管理和对疫情管理进行审核。 网络员用户角色的主要功能是疫情管理,他们可以对疫情上报管理系统中的疫情信息进行增加、删除、修改和查询等操作。 系统的主要功能模块包括: - 用户管理:负责系统用户权限和信息的管理。 - 评论列表:管理与疫情相关的评论信息。 - 疫情情况:提供疫情相关数据和信息的展示。 - 疫情上报管理:处理网络员用户上报的疫情数据。 - 疫情分类管理:对疫情信息进行分类统计和管理。 - 疫情管理:对疫情信息进行全面的增删改查操作。 该系统采用面向对象的开发模式,软件开发和硬件架设都经过了细致的规划和实施,以满足实际使用中的各项需求,并且完善了软件架设和程序编码工作。系统后端数据库使用MySQL,这是目前广泛使用的开源数据库管理系统,提供了稳定的性能和数据存储能力。系统前端和后端的业务编码工作采用了Thinkphp框架结合PHP技术,并利用了Ajax技术进行异步数据交互,以提高用户体验和系统响应速度。整个系统功能齐全,能够满足疫情上报管理和信息发布的业务需求。" 【标签】:"java vue idea mybatis redis" 从标签来看,本资源虽然是一个PHP疫情上报管理系统,但提到了Java、Vue、Mybatis和Redis这些技术。这些技术标签可能是误标,或是在资源描述中提及的其他技术栈。在本系统中,主要使用的技术是PHP、ThinkPHP框架、MySQL数据库、Ajax技术。如果资源中确实涉及到Java、Vue等技术,可能是前后端分离的开发模式,或者系统中某些特定模块使用了这些技术。 【压缩包子文件的文件名称列表】: CS268000_*** 此列表中只提供了单一文件名,没有提供详细文件列表,无法确定具体包含哪些文件和资源,但假设它可能包含了系统的源代码、数据库文件、配置文件等必要组件。