torch.nn怎么使用
时间: 2024-05-10 20:21:23 浏览: 93
torch.nn是PyTorch中用于神经网络建模和训练的模块。下面是使用torch.nn的基本步骤:
1. 导入必要的模块:
```
import torch
import torch.nn as nn
```
2. 定义一个神经网络模型,继承自nn.Module类:
```
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 定义神经网络的结构
def forward(self, x):
# 定义神经网络的前向传播过程
return x
```
3. 实例化神经网络模型:
```
net = Net()
```
4. 定义损失函数:
```
criterion = nn.CrossEntropyLoss()
```
5. 定义优化器:
```
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```
6. 训练模型:
```
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(train_loader):
# 前向传播
outputs = net(inputs)
# 计算损失
loss = criterion(outputs, labels)
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
7. 测试模型:
```
with torch.no_grad():
correct = 0
total = 0
for inputs, labels in test_loader:
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print('Accuracy of the network on the test images: %d %%' % accuracy)
```
以上就是使用torch.nn的基本步骤,具体的实现过程需要根据具体的问题进行调整。
阅读全文
相关推荐


















