for i in range(len(data_df)-2): x = datagyh[i] y = datagyh[i + 1]

时间: 2024-04-23 13:25:25 浏览: 11
这段代码中,首先通过`len(data_df)`获取数据集的长度,然后使用`range(len(data_df)-2)`循环遍历数据集中的每个元素(i从0到len(data_df)-3)。在循环中,变量`x`被赋值为`datagyh[i]`,变量`y`被赋值为`datagyh[i + 1]`。这段代码可能是用于构建时间序列预测模型的输入数据,将数据集的每个元素作为模型的输入,而将下一个元素作为模型的输出。
相关问题

import pandas as pd window_size = 4 # 定义窗口大小 df = pd.read_csv('stock_data.csv') if len(df) >= window_size and window_size > 0: df['four_days_increase'] = df['close'].rolling(window=window_size).apply(lambda x: all(x[i] < x[i+1] for i in range(window_size-1))) * 1 if len(df) >= window_size-1 and window_size > 0: df['three_days_decrease'] = df['close'].rolling(window=window_size-1).apply(lambda x: all(x[i] > x[i+1] for i in range(window_size-2))) * 1修改此代码,避免出现0 is not in range

如果你仍然遇到 `0 is not in range` 的错误,可以尝试以下两种方法: 1. 检查数据中是否有缺失值。如果数据中有缺失值,可能会导致rolling函数中的窗口大小小于指定的窗口大小,从而导致错误。你可以使用 `df.isnull().sum()` 来检查数据中是否有缺失值。 2. 将lambda函数中的 `range(window_size-1)` 和 `range(window_size-2)` 改为 `range(window_size)` 和 `range(window_size-1)`,这样可以确保范围中包含数字0。 修改后的代码如下: ``` import pandas as pd window_size = 4 # 定义窗口大小 df = pd.read_csv('stock_data.csv') if len(df) >= window_size and window_size > 0: df['four_days_increase'] = df['close'].rolling(window=window_size).apply(lambda x: all(x[i] < x[i+1] for i in range(window_size))) * 1 if len(df) >= window_size-1 and window_size > 0: df['three_days_decrease'] = df['close'].rolling(window=window_size-1).apply(lambda x: all(x[i] > x[i+1] for i in range(window_size-1))) * 1 ``` 注意,这里仅仅是对错误的解决方案,如果是数据问题,需要对数据进行处理。

import numpy as np import pandas as pd from scipy.stats import kstest #from sklearn import preprocessing # get a column from dataframe def select_data(data, ny): yName = data.columns[ny] Y = data[yName] return Y # see which feature is normally distributed from dataframe def normal_test(df): for i in range(len(df.columns)): y = select_data(df,i) p = kstest(y,'norm') print("feature {}, p-value = {}".format(i,p[1])) # rescale feature i in dataframe def standard_rescale(df, i): y = select_data(df,i) m = np.mean(y) s = np.std(y) y = (y-m)/s return y # log-transform feature of dataframe def log_transform(df,i): y = select_data(df,i) y = np.log(y) return y # square root transform feature of dataframe def sqrt_transform(df,i): y = select_data(df,i) y = np.sqrt(y) return y # cube root transform feature of dataframe def cbrt_transform(df,i): y = select_data(df,i) y = np.cbrt(y) return y # transform dataframe into one of: standard, log, sqrt, cbrt def transform_dataframe(df, transformation): df_new = [] if transformation == "standard": for i in range(len(df.columns)-1): y = standard_rescale(df,i) df_new.append(y) df_new.append(df.iloc[:,no_feats]) elif transformation == "log": for i in range(len(df.columns)-1): y = log_transform(df,i) df_new.append(y) df_new.append(df.iloc[:,no_feats]) elif transformation == "sqrt": for i in range(len(df.columns)-1): y = sqrt_transform(df,i) df_new.append(y) df_new.append(df.iloc[:,no_feats]) elif transformation == "cbrt": for i in range(len(df.columns)-1): y = cbrt_transform(df,i) df_new.append(y) df_new.append(df.iloc[:,no_feats]) else: return "wrong arguments" df_new = pd.DataFrame(df_new) df_new = df_new.T return df_new df = pd.read_csv('iris.csv') no_feats = 4 df.columns =['0', '1', '2', '3', '4'] #normal_test(df) df_standard = transform_dataframe(df, "standard") #df_log = transform_dataframe(df, "log") #df_sqrt = transform_dataframe(df, "sqrt") #df_cbrt = transform_dataframe(df, "cbrt") #df_wrong = transform_dataframe(df, "lo") #print("standard-----------------------------------------") #normal_test(df_standard) #print("log-----------------------------------------") #normal_test(df_log) #print("square root-----------------------------------------") #normal_test(df_sqrt) #print("cube root-----------------------------------------") #normal_test(df_cbrt) result = df_standard # create new csv file with new dataframe result.to_csv(r'iris_std.csv', index = False, header=True)解释每一行代码

``` import numpy as np import pandas as pd from scipy.stats import kstest #定义一个函数,从DataFrame中获取指定列的数据 def select_data(data, ny): yName = data.columns[ny] Y = data[yName] return Y #定义一个函数,用于检验DataFrame中的每个特征是否符合正态分布 def normal_test(df): for i in range(len(df.columns)): y = select_data(df,i) p = kstest(y,'norm') print("feature {}, p-value = {}".format(i,p[1])) #定义一个函数,用于将指定列的特征进行标准化处理 def standard_rescale(df, i): y = select_data(df,i) m = np.mean(y) s = np.std(y) y = (y-m)/s return y #定义一个函数,用于对指定列的特征进行log变换 def log_transform(df,i): y = select_data(df,i) y = np.log(y) return y #定义一个函数,用于对指定列的特征进行平方根变换 def sqrt_transform(df,i): y = select_data(df,i) y = np.sqrt(y) return y #定义一个函数,用于对指定列的特征进行立方根变换 def cbrt_transform(df,i): y = select_data(df,i) y = np.cbrt(y) return y #定义一个函数,用于对DataFrame中的特征进行不同的变换 def transform_dataframe(df, transformation): df_new = [] if transformation == "standard": for i in range(len(df.columns)-1): y = standard_rescale(df,i) df_new.append(y) df_new.append(df.iloc[:,no_feats]) elif transformation == "log": for i in range(len(df.columns)-1): y = log_transform(df,i) df_new.append(y) df_new.append(df.iloc[:,no_feats]) elif transformation == "sqrt": for i in range(len(df.columns)-1): y = sqrt_transform(df,i) df_new.append(y) df_new.append(df.iloc[:,no_feats]) elif transformation == "cbrt": for i in range(len(df.columns)-1): y = cbrt_transform(df,i) df_new.append(y) df_new.append(df.iloc[:,no_feats]) else: return "wrong arguments" df_new = pd.DataFrame(df_new) df_new = df_new.T return df_new #读入iris.csv文件,并将第一行的列名替换为0,1,2,3,4 df = pd.read_csv('iris.csv') no_feats = 4 df.columns =['0', '1', '2', '3', '4'] #对DataFrame中的每个特征进行正态性检验 #normal_test(df) #对DataFrame进行标准化处理 df_standard = transform_dataframe(df, "standard") #对DataFrame进行log变换 #df_log = transform_dataframe(df, "log") #对DataFrame进行平方根变换 #df_sqrt = transform_dataframe(df, "sqrt") #对DataFrame进行立方根变换 #df_cbrt = transform_dataframe(df, "cbrt") #调用了一个不存在的变换,测试是否会返回错误提示 #df_wrong = transform_dataframe(df, "lo") #分别对标准化、log、平方根、立方根变换后的DataFrame进行正态性检验 #print("standard-----------------------------------------") #normal_test(df_standard) #print("log-----------------------------------------") #normal_test(df_log) #print("square root-----------------------------------------") #normal_test(df_sqrt) #print("cube root-----------------------------------------") #normal_test(df_cbrt) #将标准化后的DataFrame保存为iris_std.csv文件 result = df_standard result.to_csv(r'iris_std.csv', index = False, header=True) ``` 该程序是一个数据预处理的示例,其主要作用是读入一个包含鸢尾花数据的CSV文件,然后对数据进行不同的变换,包括标准化、log变换、平方根变换和立方根变换,并将变换后的结果保存到新的CSV文件中。程序中使用了numpy、pandas、scipy.stats等库,其中的函数包括对DataFrame中的特征进行正态性检验的normal_test函数,将指定列的特征进行标准化处理的standard_rescale函数,对指定列的特征进行log、平方根和立方根变换的log_transform、sqrt_transform和cbrt_transform函数,以及对整个DataFrame进行不同变换的transform_dataframe函数。在实际应用中,我们可以根据具体数据的特点选择合适的变换方式,以提高模型的性能和准确度。

相关推荐

import pandas as pd df = pd.read_csv('stock_data.csv') df['four_days_increase'] = df['close'].rolling(window=4).apply(lambda x: all(x[i] < x[i+1] for i in range(3))) * 1 df['three_days_decrease'] = df['close'].rolling(window=3).apply(lambda x: all(x[i] > x[i+1] for i in range(2))) * 1 capital = 1000000 max_stock_per_day = 10 max_stock_value = 100000 start_date = '2020-01-01' end_date = '2023-01-01' df = df[(df['date'] >= start_date) & (df['date'] < end_date)] df = df.reset_index(drop=True) hold_stock = [] for i, row in df.iterrows(): if len(hold_stock) > 0: sell_stock = [] for stock in hold_stock: if i - stock['buy_day'] >= 3: capital += stock['buy_price'] * stock['buy_qty'] * (1 - 0.002) sell_stock.append(stock) hold_stock = [stock for stock in hold_stock if stock not in sell_stock] df_today = df.loc[i:i+3] if i + 3 >= len(df): break if all(df_today['four_days_increase']) and all(df_today['three_days_decrease'].iloc[1:]): available_capital = capital available_stock = max_stock_per_day available_value = max_stock_value for j, stock_row in df_today.iterrows(): if available_capital > 0 and available_stock > 0 and available_value > 0: buy_qty = min(int(available_capital / (stock_row['close'] * 1.002)), available_stock, int(available_value / (stock_row['close'] * 1.002))) if buy_qty > 0: hold_stock.append({'buy_day': i, 'buy_price': stock_row['close'], 'buy_qty': buy_qty}) available_capital -= stock_row['close'] * buy_qty * 1.002 available_stock -= 1 available_value -= stock_row['close'] * buy_qty * 1.002 print('Final capital:', capital)让上述代码在jupyter里不报错

将冒号后面的代码改写成一个nn.module类:import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, LSTM data1 = pd.read_csv("终极1.csv", usecols=[17], encoding='gb18030') df = data1.fillna(method='ffill') data = df.values.reshape(-1, 1) scaler = MinMaxScaler(feature_range=(0, 1)) data = scaler.fit_transform(data) train_size = int(len(data) * 0.8) test_size = len(data) - train_size train, test = data[0:train_size, :], data[train_size:len(data), :] def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) look_back = 30 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) model = Sequential() model.add(LSTM(50, input_shape=(1, look_back), return_sequences=True)) model.add(LSTM(50)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, epochs=6, batch_size=1, verbose=2) trainPredict = model.predict(trainX) testPredict = model.predict(testX) trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY])

最新推荐

recommend-type

android手机应用源码Imsdroid语音视频通话源码.rar

android手机应用源码Imsdroid语音视频通话源码.rar
recommend-type

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx
recommend-type

JavaScript_超过100种语言的纯Javascript OCR.zip

JavaScript
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这