讲这段代码从MATLAB转换成python:center = mf*(data+alfa*data1)./((ones(size(data, 2), 1)*sum(mf'))'*(1+alfa));

时间: 2023-12-19 18:04:40 浏览: 119
Sure, I can help you convert this MATLAB code to Python. Here's the Python equivalent of the given code: center = mf*(data * alpha * data1)/((np.ones(data.shape[1]) * mf.sum(axis=1)) * (1 - alpha)) Note that I have used the NumPy library in the Python code. Please let me know if you have any further questions!
相关问题

load Z_data2.mat %加载Z数据 i=1; % %%%--------------------------------- f = 1e6:1e5:100e6; r=3.9904e-3; D=15.8e-3; mu_c=12.5664e-7; sigma_c=5.8e7; epslon=8.85e-12; tdelta = -5.7e-10.*f+0.075; delta = sqrt(1./pi./f./mu_c./sigma_c); R_solid = 1./pi./r./delta./sigma_c; R = (D./2./r)./sqrt((D./2./r).^2-1).*R_solid; Ls = R./2./pi./f; Lm = mu_c/pi*acosh(D/2/r); L = Ls+Lm; C = pi*epslon/acosh(D/2/r); G = 2.*pi.*f.*C.*tdelta; temp_a = complex(R, 2.*pi.*f.*L); temp_b = complex(G, 2.*pi.*f.*C); gama = sqrt(temp_a.*temp_b); z0 = sqrt(L./C); alfa = R./2./z0+G.*z0./2; beta = 2.*pi.*f.*sqrt(L.*C); gama = alfa+beta.*1i; F0=zeros(1,991); g=gama; %给γh赋值 %%%----------------------------------- M = zeros(1, 991); % 创建1x991的矩阵M,初始值为0 i = 1; %%%--------------------------------------- syms f F0=zeros(1,991); for x=0:100/991:100 for i=1:991 f0=Z_data2.*exp(-2.*gama.*x);%被积函数f0(f,x) F0=int(f0,f,1e6,100e6);%对f积分的F(x) end end figure(1) %图像1 xout = 0:100/991:100; yout = double(subs(F0,x,xout)); plot(xout,F0) xlabel('x') ylabel('h(x)') title('h(x)关于x的二维曲线')该程序中有什么问题

在程序中存在以下问题: 1. 在第一行加载数据文件Z_data2.mat时,应该加上文件名的引号,即改为load('Z_data2.mat')。 2. 在第38行,应该将F0的初始值设为一个与xout相同大小的矩阵,即F0=zeros(size(xout))。 3. 在第14行,gama的计算公式中,应该将beta的计算公式改为beta = 2.*pi.*f.*sqrt(L.*C)。 4. 在第30行,应该将gama的计算公式改为gama = sqrt(temp_a.*temp_b)。 5. 在第32行,应该将z0的计算公式改为z0 = sqrt(L./C)。 6. 在第33行,应该将alfa和beta的计算公式改为alfa = R./2./z0+G.*z0./2; beta = 2.*pi.*f.*sqrt(L.*C)。 7. 在第34行,gama的计算公式已经在第30行中计算了,无需再次计算。 8. 在第36行,将gama的值赋给g时,应该取gama的实部和虚部,即g = real(gama) + imag(gama)*1i。 9. 在第48行,应该将xout和F0的顺序颠倒,即plot(F0, xout),才能正确绘制出关于x的二维曲线。 10. 在第20行,应该将f0的计算公式中的x改为i,即f0=Z_data2.*exp(-2.*gama.*i)。 11. 在第21行,应该将int函数的参数f改为符号变量f,即F0=int(f0,f,1e6,100e6)。 12. 在第38行,应该将yout的计算公式改为yout = double(subs(F0,xout))。 综上所述,修正后的程序如下: ``` load('Z_data2.mat') % 加载Z数据 f = 1e6:1e5:100e6; r = 3.9904e-3; D = 15.8e-3; mu_c = 12.5664e-7; sigma_c = 5.8e7; epslon = 8.85e-12; tdelta = -5.7e-10.*f+0.075; delta = sqrt(1./pi./f./mu_c./sigma_c); R_solid = 1./pi./r./delta./sigma_c; R = (D./2./r)./sqrt((D./2./r).^2-1).*R_solid; Ls = R./2./pi./f; Lm = mu_c/pi*acosh(D/2/r); L = Ls+Lm; C = pi*epslon/acosh(D/2/r); G = 2.*pi.*f.*C.*tdelta; temp_a = complex(R, 2.*pi.*f.*L); temp_b = complex(G, 2.*pi.*f.*C); gama = sqrt(temp_a.*temp_b); z0 = sqrt(L./C); alfa = R./2./z0+G.*z0./2; beta = 2.*pi.*f.*sqrt(L.*C); g = real(gama) + imag(gama)*1i; % 给g赋值 M = zeros(1, 991); % 创建1x991的矩阵M,初始值为0 F0 = zeros(size(xout)); % 给F0赋初值 for x = 0:100/991:100 for i = 1:991 syms f f0 = Z_data2(i).*exp(-2.*g.*x); % 被积函数f0(f,x) F0(i) = int(f0, f, 1e6, 100e6); % 对f积分的F(x) end end figure(1) % 图像1 xout = 0:100/991:100; yout = double(subs(F0, xout)); plot(yout, xout) xlabel('x') ylabel('h(x)') title('h(x)关于x的二维曲线') ```

以下MATLAB代码有什么问题怎么修改%RBF identification clear all; close all; alfa=0.05; xite=0.15; x=[-5,5]'; b=3*ones(5,1); c=[-1 -0.5 0 0.5 1; -1 -0.5 0 0.5 1]; w=rands(5,1); w_1=w;w_2=w_1; d_w=0*w; y_1=-5; ts=0.001; for k=1:1:10000 time(k)=k*ts; u(k)=sin(k*ts); y(k)=[u(k)-0.9*y_1(k)]/[1+y_1(k)^2]; x(1)=u(k); x(2)=y_1; for j=1:1:5 h(j)=exp(-norm(x-c(:,j))^2/(2*b(j)*b(j))); end ym(k)=w'*h'; em(k)=y(k)-ym(k); d_w(j)=xite*em(k)*h(j); w=w_1+d_w+alfa*(w_1-w_2); y_1=y(k); w_2=w_1; w_1=w; end figure(1); subplot(211); plot(time,y,'r',time,ym,'k:','linewidth',2); xlabel('time(s)');ylabel('y and ym'); legend('ideal signal','signal approximation'); subplot(212); plot(time,y-ym,'k','linewidth',2); xlabel('time(s)');ylabel('error');

在这段代码中,有一个错误是在计算d_w时,j的取值范围不正确。应该在计算h(j)时同时计算d_w(j),因此应该将d_w(j)的计算放入for j循环中。 以下是修改后的代码: ``` % RBF identification clear all; close all; alfa = 0.05; xite = 0.15; x = [-5,5]'; b = 3*ones(5,1); c = [-1 -0.5 0 0.5 1; -1 -0.5 0 0.5 1]; w = rands(5,1); w_1 = w; w_2 = w_1; d_w = zeros(5,1); % 修正1:声明d_w为5*1的向量 y_1 = -5; ts = 0.001; for k = 1:1:10000 time(k) = k*ts; u(k) = sin(k*ts); y(k) = [u(k)-0.9*y_1]/[1+y_1^2]; x(1) = u(k); x(2) = y_1; for j = 1:1:5 h(j) = exp(-norm(x-c(:,j))^2/(2*b(j)*b(j))); d_w(j) = xite*(y(k)-w'*h')*h(j); % 修正2:计算d_w(j)时加入j的索引 end ym(k) = w'*h'; em(k) = y(k)-ym(k); w = w_1+d_w+alfa*(w_1-w_2); y_1 = y(k); w_2 = w_1; w_1 = w; end figure(1); subplot(211); plot(time,y,'r',time,ym,'k:','linewidth',2); xlabel('time(s)');ylabel('y and ym'); legend('ideal signal','signal approximation'); subplot(212); plot(time,em,'k','linewidth',2); xlabel('time(s)');ylabel('error'); ``` 修正1:声明d_w为5*1的向量,以与h向量匹配。 修正2:计算d_w(j)时加入j的索引,以防止j的值超出d_w的索引范围。 此外,建议在使用rands函数生成随机数时,指定随机数生成器的种子,以确保每次运行结果的一致性。例如,可以使用rng函数指定种子: ``` rng(0); % 设置随机数生成器种子为0 w = rands(5,1); % 生成随机数 ```
阅读全文

相关推荐

#include<iostream> using namespace std; #define pi 3.1415926 struct coord { double x; double y; }; double cot(double a); double DmsToRad(double Dms); coord For_Insec(double xA, double yA, double xB, double yB, double alfa, double beta, double a); int main() { double a; cout << "请申明坐标编号注记方式(逆时针为1,顺时针0:"; cin >> a; cout << endl; double x1, y1, x2, y2, alfa, beta; cout << "请输入已知坐标点A的x,y坐标:"; cin >> x1 >> y1; cout << endl; cout << "请输入已知坐标点B的x,y坐标:"; cin >> x2 >> y2; cout << endl; cout << "请输入测量角度α和β:"; cin >> alfa >> beta; coord p; p = For_Insec(x1, y1, x2, y2, alfa, beta, a); cout << endl; cout << "待定点P的坐标xp=" << p.x << " ,y=" << p.y; return 0; } double cot(double a)//cot三角函数 { return cos(a) / sin(a); } double DmsToRad(double Dms)//角度转换函数 { int i_Deg = (int)Dms; double temp = (Dms - i_Deg) * 100; int i_Min = (int)temp; double sec = (temp - i_Min) * 100; double Rad = (i_Deg + i_Min / 60.0 + sec / 3600)*pi / 180; return Rad; } coord For_Insec(double xA, double yA, double xB, double yB, double alfa, double beta, double a) { alfa = DmsToRad(alfa); beta = DmsToRad(beta); coord p; if (a)//逆时针注记 { p.x = (xA*cot(beta) + xB*cot(alfa) + (yB - yA)) / (cot(alfa) + cot(beta)); p.y = (yA*cot(beta) + yB*cot(alfa) + (xA - xB)) / (cot(alfa) + cot(beta)); } else { p.x = (xA*cot(beta) + xB*cot(alfa) + (yA - yB)) / (cot(alfa) + cot(beta)); p.y = (yA*cot(beta) + yB*cot(alfa) + (xB - xA)) / (cot(alfa) + cot(beta)); } return p; }优化上面代码

function [Fyrr,Fxrr,dFx_ds_4,dFy_ds_4]= fcn(Fzrr,alfa4,Srr,urr,mu) % This block supports an embeddable subset of the MATLAB language. % See the help menu for details. epsilon=0.015; Ca=30000; Cs=50000; Lamda=muFzrr(1-epsilonurrsqrt(Srr^2+(tan(alfa4))^2))(1-Srr)/(2sqrt(Cs^2Srr^2+Ca^2(tan(alfa4))^2)); if Lamda<1 f=Lamda*(2-Lamda); Fyrr=Catan(alfa4)f/(1-Srr); Fxrr=CsSrrf/(1-Srr); dFx_ds_4=(5Fzrrmu*((Fzrrmu(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(2*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) + (5FzrrSrrmu((3urr(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1)((Fzrrmu*((3urr(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - (FzrrSrrmu*(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(800*(25Srr^2 + 9tan(alfa4)^2)^(3/2)) + (3FzrrSrrmuurr*(Srr - 1))/(4000000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)(Srr^2 + tan(alfa4)^2)^(1/2))))/(2(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - (125FzrrSrr^2mu((Fzrrmu(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(2*(25Srr^2 + 9tan(alfa4)^2)^(3/2)) + (3FzrrSrr^2muurr*((Fzrrmu(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2))/(80*(25Srr^2 + 9tan(alfa4)^2)^(1/2)(Srr^2 + tan(alfa4)^2)^(1/2)); dFy_ds_4=(3Fzrrmutan(alfa4)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1)((Fzrrmu*((3urr(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - (FzrrSrrmu*(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(800*(25Srr^2 + 9tan(alfa4)^2)^(3/2)) + (3FzrrSrrmuurr*(Srr - 1))/(4000000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)(Srr^2 + tan(alfa4)^2)^(1/2))))/(2(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - (75FzrrSrrmutan(alfa4)((Fzrrmu*(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(2*(25Srr^2 + 9tan(alfa4)^2)^(3/2)) + (9FzrrSrrmuurrtan(alfa4)((Fzrrmu(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2))/(400*(25Srr^2 + 9tan(alfa4)^2)^(1/2)(Srr^2 + tan(alfa4)^2)^(1/2)); else f=1; Fyrr=Catan(alfa4)f/(1-Srr); Fxrr=CsSrrf/(1-Srr); dFx_ds_4=(50000Srr)/(Srr - 1)^2 - 50000/(Srr - 1); dFy_ds_4=(30000*tan(alfa4))/(Srr - 1)^2; end

最新推荐

recommend-type

菲涅耳离轴全息图的记录过程Matlab程序

菲涅耳离轴全息图的记录过程 Matlab 程序 菲涅耳离轴全息图(Fresnel Off-Axis Hologram)是一种特殊类型的全息图,它能够记录物体的三维信息。菲涅耳离轴全息图的记录过程涉及到光学原理、数学算法和计算机编程等...
recommend-type

PUMA机器人正逆运动学推导及运动空间解算.docx

T_34 = Trans(a_3,d_4,0)*Rot(1,alfa(4))*Rot(3,theta_4); T_45 = Rot(1,alfa(5))*Rot(3,theta_5); T_56 = Rot(1,alfa(6))*Rot(3,theta_6); T_06 = T_01*T_12*T_23*T_34*T_45*T_56; ``` 通过这个程序,我们可以...
recommend-type

bp-pid的S型函数

在提供的代码中,`exp_pidf`函数是一个模拟环境,包含了`mdlInitializeSizes`、`mdlUpdates`和`mdlOutputs`等子函数,用于处理不同的操作状态。`mdlInitializeSizes`负责初始化模型的尺寸,定义了连续状态、离散状态...
recommend-type

Deep-Learning-with-PyTorch-by-Eli-Stevens-Luca-Antiga-Thomas-Viehmann

Deep_Learning_with_PyTorch_by_Eli_Stevens_Luca_Antiga_Thomas_Viehmann
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依