说明以下这段脚本的目的. conlevel<-function(k,n,mu,s,alfa=O.O5,estimator=matrix(NA,1,2)){ time.start=Sys.time() id=O; t.alpha=qt(1-O.5*alfa,n-1) for (i in 1:k){ x<-rnorm(n,mu,s) xbar<-mean(x) sigma<-sd(x) temp<-1*(abs(xbar-mu)<=sigma*t.alpha/sqrt(n)) id<-id+temp } level<-id/k time.end=Sys.time() time.needed<-as.numeric(time.end-time.start) estimator[,1]<-level estimator[,2]<-time.needed estim<-as.data.frame(estimator) names(estim)<-c(“EcL”,“Time”) list(estim=estim) } conlevel(1OOO,2O,1O,2)

时间: 2024-03-19 11:40:06 浏览: 93
这段脚本的目的是实现一个函数conlevel,用于计算均值置信区间的覆盖率。具体而言,该函数通过模拟抽样来生成k个样本,每个样本包含n个从均值为mu、标准差为s的正态分布中随机抽取的数据点。对于每个样本,计算样本的置信区间,如果该置信区间包含了真实均值mu,则标记为1,否则标记为0。最终返回所有k个样本中包含真实均值的置信区间的比例,以及函数执行所需的时间。 在给定的脚本中,函数的默认参数包括alfa为0.05,estimator为一个2列的NA值矩阵。函数执行时,首先记录开始时间,然后通过循环生成k个样本,并对每个样本计算置信区间是否包含真实均值。最后计算样本的置信区间覆盖率和函数运行时间,并将结果存储在estimator矩阵中。最终返回一个包含置信区间覆盖率和函数执行时间的数据框。调用函数时,使用参数1000, 20, 10, 2表示生成1000个样本,每个样本包含20个数据点,真实均值为10,标准差为2。
相关问题

load Z_data2.mat %加载Z数据 i=1; % %%%--------------------------------- f = 1e6:1e5:100e6; r=3.9904e-3; D=15.8e-3; mu_c=12.5664e-7; sigma_c=5.8e7; epslon=8.85e-12; tdelta = -5.7e-10.*f+0.075; delta = sqrt(1./pi./f./mu_c./sigma_c); R_solid = 1./pi./r./delta./sigma_c; R = (D./2./r)./sqrt((D./2./r).^2-1).*R_solid; Ls = R./2./pi./f; Lm = mu_c/pi*acosh(D/2/r); L = Ls+Lm; C = pi*epslon/acosh(D/2/r); G = 2.*pi.*f.*C.*tdelta; temp_a = complex(R, 2.*pi.*f.*L); temp_b = complex(G, 2.*pi.*f.*C); gama = sqrt(temp_a.*temp_b); z0 = sqrt(L./C); alfa = R./2./z0+G.*z0./2; beta = 2.*pi.*f.*sqrt(L.*C); gama = alfa+beta.*1i; F0=zeros(1,991); g=gama; %给γh赋值 %%%----------------------------------- M = zeros(1, 991); % 创建1x991的矩阵M,初始值为0 i = 1; %%%--------------------------------------- syms f F0=zeros(1,991); for x=0:100/991:100 for i=1:991 f0=Z_data2.*exp(-2.*gama.*x);%被积函数f0(f,x) F0=int(f0,f,1e6,100e6);%对f积分的F(x) end end figure(1) %图像1 xout = 0:100/991:100; yout = double(subs(F0,x,xout)); plot(xout,F0) xlabel('x') ylabel('h(x)') title('h(x)关于x的二维曲线')该程序中有什么问题

在程序中存在以下问题: 1. 在第一行加载数据文件Z_data2.mat时,应该加上文件名的引号,即改为load('Z_data2.mat')。 2. 在第38行,应该将F0的初始值设为一个与xout相同大小的矩阵,即F0=zeros(size(xout))。 3. 在第14行,gama的计算公式中,应该将beta的计算公式改为beta = 2.*pi.*f.*sqrt(L.*C)。 4. 在第30行,应该将gama的计算公式改为gama = sqrt(temp_a.*temp_b)。 5. 在第32行,应该将z0的计算公式改为z0 = sqrt(L./C)。 6. 在第33行,应该将alfa和beta的计算公式改为alfa = R./2./z0+G.*z0./2; beta = 2.*pi.*f.*sqrt(L.*C)。 7. 在第34行,gama的计算公式已经在第30行中计算了,无需再次计算。 8. 在第36行,将gama的值赋给g时,应该取gama的实部和虚部,即g = real(gama) + imag(gama)*1i。 9. 在第48行,应该将xout和F0的顺序颠倒,即plot(F0, xout),才能正确绘制出关于x的二维曲线。 10. 在第20行,应该将f0的计算公式中的x改为i,即f0=Z_data2.*exp(-2.*gama.*i)。 11. 在第21行,应该将int函数的参数f改为符号变量f,即F0=int(f0,f,1e6,100e6)。 12. 在第38行,应该将yout的计算公式改为yout = double(subs(F0,xout))。 综上所述,修正后的程序如下: ``` load('Z_data2.mat') % 加载Z数据 f = 1e6:1e5:100e6; r = 3.9904e-3; D = 15.8e-3; mu_c = 12.5664e-7; sigma_c = 5.8e7; epslon = 8.85e-12; tdelta = -5.7e-10.*f+0.075; delta = sqrt(1./pi./f./mu_c./sigma_c); R_solid = 1./pi./r./delta./sigma_c; R = (D./2./r)./sqrt((D./2./r).^2-1).*R_solid; Ls = R./2./pi./f; Lm = mu_c/pi*acosh(D/2/r); L = Ls+Lm; C = pi*epslon/acosh(D/2/r); G = 2.*pi.*f.*C.*tdelta; temp_a = complex(R, 2.*pi.*f.*L); temp_b = complex(G, 2.*pi.*f.*C); gama = sqrt(temp_a.*temp_b); z0 = sqrt(L./C); alfa = R./2./z0+G.*z0./2; beta = 2.*pi.*f.*sqrt(L.*C); g = real(gama) + imag(gama)*1i; % 给g赋值 M = zeros(1, 991); % 创建1x991的矩阵M,初始值为0 F0 = zeros(size(xout)); % 给F0赋初值 for x = 0:100/991:100 for i = 1:991 syms f f0 = Z_data2(i).*exp(-2.*g.*x); % 被积函数f0(f,x) F0(i) = int(f0, f, 1e6, 100e6); % 对f积分的F(x) end end figure(1) % 图像1 xout = 0:100/991:100; yout = double(subs(F0, xout)); plot(yout, xout) xlabel('x') ylabel('h(x)') title('h(x)关于x的二维曲线') ```

gama = alfa+beta.*1i; g=gama; %%%----------------------------------- i = 1; M = zeros(1, 991); while(i <= 991) % 逐一读取Z数据 z = Z_data2(1, i); % 给Z(f)赋值 F0 = z * exp(-2 * gama * x); % 被积函数F(f, x) h = int(F0, x, 1e6, 100e6); % 对f积分的F(x) result = vpa(h, 6); M(i) = result; % 结果写入M i = i + 1; end使M(I)

根据你提供的代码,我猜测你的意图是要求解一个积分,并将结果存储在M数组中。在这段代码中,gama是一个复数,由alfa和beta构成,g的值与gama相同。 然而,我注意到代码中的两个变量(alfa和beta)并未定义,因此无法判断代码的实际目的和背景。如果你能提供更多的代码和背景信息,我可以更好地帮助你。
阅读全文

相关推荐

#include<iostream> using namespace std; #define pi 3.1415926 struct coord { double x; double y; }; double cot(double a); double DmsToRad(double Dms); coord For_Insec(double xA, double yA, double xB, double yB, double alfa, double beta, double a); int main() { double a; cout << "请申明坐标编号注记方式(逆时针为1,顺时针0:"; cin >> a; cout << endl; double x1, y1, x2, y2, alfa, beta; cout << "请输入已知坐标点A的x,y坐标:"; cin >> x1 >> y1; cout << endl; cout << "请输入已知坐标点B的x,y坐标:"; cin >> x2 >> y2; cout << endl; cout << "请输入测量角度α和β:"; cin >> alfa >> beta; coord p; p = For_Insec(x1, y1, x2, y2, alfa, beta, a); cout << endl; cout << "待定点P的坐标xp=" << p.x << " ,y=" << p.y; return 0; } double cot(double a)//cot三角函数 { return cos(a) / sin(a); } double DmsToRad(double Dms)//角度转换函数 { int i_Deg = (int)Dms; double temp = (Dms - i_Deg) * 100; int i_Min = (int)temp; double sec = (temp - i_Min) * 100; double Rad = (i_Deg + i_Min / 60.0 + sec / 3600)*pi / 180; return Rad; } coord For_Insec(double xA, double yA, double xB, double yB, double alfa, double beta, double a) { alfa = DmsToRad(alfa); beta = DmsToRad(beta); coord p; if (a)//逆时针注记 { p.x = (xA*cot(beta) + xB*cot(alfa) + (yB - yA)) / (cot(alfa) + cot(beta)); p.y = (yA*cot(beta) + yB*cot(alfa) + (xA - xB)) / (cot(alfa) + cot(beta)); } else { p.x = (xA*cot(beta) + xB*cot(alfa) + (yA - yB)) / (cot(alfa) + cot(beta)); p.y = (yA*cot(beta) + yB*cot(alfa) + (xB - xA)) / (cot(alfa) + cot(beta)); } return p; }优化上面代码

function [Fyrr,Fxrr,dFx_ds_4,dFy_ds_4]= fcn(Fzrr,alfa4,Srr,urr,mu) % This block supports an embeddable subset of the MATLAB language. % See the help menu for details. epsilon=0.015; Ca=30000; Cs=50000; Lamda=muFzrr(1-epsilonurrsqrt(Srr^2+(tan(alfa4))^2))(1-Srr)/(2sqrt(Cs^2Srr^2+Ca^2(tan(alfa4))^2)); if Lamda<1 f=Lamda*(2-Lamda); Fyrr=Catan(alfa4)f/(1-Srr); Fxrr=CsSrrf/(1-Srr); dFx_ds_4=(5Fzrrmu*((Fzrrmu(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(2*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) + (5FzrrSrrmu((3urr(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1)((Fzrrmu*((3urr(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - (FzrrSrrmu*(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(800*(25Srr^2 + 9tan(alfa4)^2)^(3/2)) + (3FzrrSrrmuurr*(Srr - 1))/(4000000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)(Srr^2 + tan(alfa4)^2)^(1/2))))/(2(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - (125FzrrSrr^2mu((Fzrrmu(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(2*(25Srr^2 + 9tan(alfa4)^2)^(3/2)) + (3FzrrSrr^2muurr*((Fzrrmu(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2))/(80*(25Srr^2 + 9tan(alfa4)^2)^(1/2)(Srr^2 + tan(alfa4)^2)^(1/2)); dFy_ds_4=(3Fzrrmutan(alfa4)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1)((Fzrrmu*((3urr(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - (FzrrSrrmu*(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(800*(25Srr^2 + 9tan(alfa4)^2)^(3/2)) + (3FzrrSrrmuurr*(Srr - 1))/(4000000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)(Srr^2 + tan(alfa4)^2)^(1/2))))/(2(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - (75FzrrSrrmutan(alfa4)((Fzrrmu*(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(2*(25Srr^2 + 9tan(alfa4)^2)^(3/2)) + (9FzrrSrrmuurrtan(alfa4)((Fzrrmu(Srr - 1)((3urr*(Srr^2 + tan(alfa4)^2)^(1/2))/200 - 1))/(20000*(25Srr^2 + 9tan(alfa4)^2)^(1/2)) - 2))/(400*(25Srr^2 + 9tan(alfa4)^2)^(1/2)(Srr^2 + tan(alfa4)^2)^(1/2)); else f=1; Fyrr=Catan(alfa4)f/(1-Srr); Fxrr=CsSrrf/(1-Srr); dFx_ds_4=(50000Srr)/(Srr - 1)^2 - 50000/(Srr - 1); dFy_ds_4=(30000*tan(alfa4))/(Srr - 1)^2; end

最新推荐

recommend-type

bp-pid的S型函数

"bp-pid的S型函数"是神经网络控制策略中的一种实现方式,它结合了BP神经网络(Backpropagation Neural Network)与PID控制器(Proportional-Integral-Derivative Controller)。BP神经网络是一种多层前馈网络,常...
recommend-type

PUMA机器人正逆运动学推导及运动空间解算.docx

T_45 = Rot(1,alfa(5))*Rot(3,theta_5); T_56 = Rot(1,alfa(6))*Rot(3,theta_6); T_06 = T_01*T_12*T_23*T_34*T_45*T_56; ``` 通过这个程序,我们可以计算PUMA机器人的运动范围和正逆运动学方程。
recommend-type

菲涅耳离轴全息图的记录过程Matlab程序

[x, y] = meshgrid(-dx * (M / 2 - 1):dx:dx * M / 2, -dy * (N / 2 - 1):dy:dy * N / 2); Ref = exp(i * 2 * pi * Alfa * x / Lamda); 五、全息图合成 菲涅耳离轴全息图的记录过程中,需要合成全息图。这个过程...
recommend-type

【java毕业设计】应急救援物资管理系统源码(springboot+vue+mysql+说明文档).zip

项目经过测试均可完美运行! 环境说明: 开发语言:java jdk:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse
recommend-type

基于java的音乐网站答辩PPT.pptx

基于java的音乐网站答辩PPT.pptx
recommend-type

Android圆角进度条控件的设计与应用

资源摘要信息:"Android-RoundCornerProgressBar" 在Android开发领域,一个美观且实用的进度条控件对于提升用户界面的友好性和交互体验至关重要。"Android-RoundCornerProgressBar"是一个特定类型的进度条控件,它不仅提供了进度指示的常规功能,还具备了圆角视觉效果,使其更加美观且适应现代UI设计趋势。此外,该控件还可以根据需求添加图标,进一步丰富进度条的表现形式。 从技术角度出发,实现圆角进度条涉及到Android自定义控件的开发。开发者需要熟悉Android的视图绘制机制,包括但不限于自定义View类、绘制方法(如`onDraw`)、以及属性动画(Property Animation)。实现圆角效果通常会用到`Canvas`类提供的画图方法,例如`drawRoundRect`函数,来绘制具有圆角的矩形。为了添加图标,还需考虑如何在进度条内部适当地放置和绘制图标资源。 在Android Studio这一集成开发环境(IDE)中,自定义View可以通过继承`View`类或者其子类(如`ProgressBar`)来完成。开发者可以定义自己的XML布局文件来描述自定义View的属性,比如圆角的大小、颜色、进度值等。此外,还需要在Java或Kotlin代码中处理用户交互,以及进度更新的逻辑。 在Android中创建圆角进度条的步骤通常如下: 1. 创建自定义View类:继承自`View`类或`ProgressBar`类,并重写`onDraw`方法来自定义绘制逻辑。 2. 定义XML属性:在资源文件夹中定义`attrs.xml`文件,声明自定义属性,如圆角半径、进度颜色等。 3. 绘制圆角矩形:在`onDraw`方法中使用`Canvas`的`drawRoundRect`方法绘制具有圆角的进度条背景。 4. 绘制进度:利用`Paint`类设置进度条颜色和样式,并通过`drawRect`方法绘制当前进度覆盖在圆角矩形上。 5. 添加图标:根据自定义属性中的图标位置属性,在合适的时机绘制图标。 6. 通过编程方式更新进度:在Activity或Fragment中,使用自定义View的方法来编程更新进度值。 7. 实现动画:如果需要,可以通过Android的动画框架实现进度变化的动画效果。 标签中的"Android开发"表明,这些知识点和技能主要面向的是Android平台的开发人员。对于想要在Android应用中实现自定义圆角进度条的开发者来说,他们需要具备一定的Android编程基础,并熟悉相关的开发工具和库。 在"RoundCornerProgressBar-master"压缩包文件的文件名称列表中,我们可以推测这个资源包含了完整的项目代码,包括源代码、资源文件、布局文件、可能的示例代码以及必要的文档说明。开发者通过下载和解压缩这个包,可以得到一个完整的项目,从而可以直接查看代码实现细节,或是将其集成到自己的项目中。 最终,对于希望使用"Android-RoundCornerProgressBar"的开发者,关键在于理解自定义View的创建过程、圆角图形的绘制技术,以及如何在Android应用中集成和使用这些自定义控件。通过上述知识点的学习和实践,开发者能够掌握在Android应用中创建美观且功能丰富的用户界面所需的技能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言lattice包实战】:从案例到技巧,图形制作不再难

![R语言数据包使用详细教程lattice](http://pfister.ee.duke.edu/images/Nguyen-arxiv11-fig2.jpg) # 1. R语言与lattice包概述 R语言作为统计分析领域内广泛应用的编程语言,凭借其强大的图形功能而受到数据科学家的青睐。在R语言中,lattice包是绘图系统的重要组成部分,它基于trellis图形系统设计,能够高效地创建多变量条件图。本章节将引导读者对lattice包有一个初步的了解,并概述其功能和应用范围。 ## 1.1 R语言中的图形系统 R语言提供了一系列的图形系统,基础图形系统(base graphics)是其
recommend-type

输入正整数n.打出长度为n的菱形

好的,以下是打印菱形的代码实现: ``` #include <stdio.h> #include <stdlib.h> int main() { int n, i, j; printf("请输入一个正整数n:"); scanf("%d", &n); if(n % 2 == 0) { // 如果输入的n是偶数,将其加1变成奇数 n++; } for(i = 0; i < n / 2 + 1; i++) { for(j = 0; j < n / 2 - i; j++) { printf(
recommend-type

mui框架实现带侧边栏的响应式布局

资源摘要信息:"mui实现简单布局.zip" mui是一个基于HTML5的前端框架,它采用了类似Bootstrap的语义化标签,但是专门为移动设备优化。该框架允许开发者使用Web技术快速构建高性能、可定制、跨平台的移动应用。此zip文件可能包含了一个用mui框架实现的简单布局示例,该布局具有侧边栏,能够实现首页内容的切换。 知识点一:mui框架基础 mui框架是一个轻量级的前端库,它提供了一套响应式布局的组件和丰富的API,便于开发者快速上手开发移动应用。mui遵循Web标准,使用HTML、CSS和JavaScript构建应用,它提供了一个类似于jQuery的轻量级库,方便DOM操作和事件处理。mui的核心在于其强大的样式表,通过CSS可以实现各种界面效果。 知识点二:mui的响应式布局 mui框架支持响应式布局,开发者可以通过其提供的标签和类来实现不同屏幕尺寸下的自适应效果。mui框架中的标签通常以“mui-”作为前缀,如mui-container用于创建一个宽度自适应的容器。mui中的布局类,比如mui-row和mui-col,用于创建灵活的栅格系统,方便开发者构建列布局。 知识点三:侧边栏实现 在mui框架中实现侧边栏可以通过多种方式,比如使用mui sidebar组件或者通过布局类来控制侧边栏的位置和宽度。通常,侧边栏会使用mui的绝对定位或者float浮动布局,与主内容区分开来,并通过JavaScript来控制其显示和隐藏。 知识点四:首页内容切换功能 实现首页可切换的功能,通常需要结合mui的JavaScript库来控制DOM元素的显示和隐藏。这可以通过mui提供的事件监听和动画效果来完成。开发者可能会使用mui的开关按钮或者tab标签等组件来实现这一功能。 知识点五:mui的文件结构 该压缩包文件包含的目录结构说明了mui项目的基本结构。其中,"index.html"文件是项目的入口文件,它将展示整个应用的界面。"manifest.json"文件是应用的清单文件,它在Web应用中起到了至关重要的作用,定义了应用的名称、版本、图标和其它配置信息。"css"文件夹包含所有样式表文件,"unpackage"文件夹可能包含了构建应用后的文件,"fonts"文件夹存放字体文件,"js"文件夹则是包含JavaScript代码的地方。 知识点六:mui的打包和分发 mui框架支持项目的打包和分发,开发者可以使用其提供的命令行工具来打包项目,生成可以部署到服务器的静态资源。这一步通常涉及到资源的压缩、合并和优化。打包后,开发者可以将项目作为一个Web应用分发,也可以将其打包为原生应用,比如通过Cordova、PhoneGap等工具打包成可在iOS或Android设备上安装的应用。 知识点七:mui的兼容性和性能优化 mui框架对老旧设备也做了兼容性考虑,保证应用在低端设备上也有较好的性能表现。性能优化方面,mui提供了多种工具和最佳实践,例如使用懒加载、避免全局变量污染、减少DOM操作等策略来提高应用的运行速度和用户体验。 以上内容是根据标题、描述以及文件名称列表推测出的关于mui实现简单布局的知识点。开发者可以通过分析和实践上述知识点来更好地理解和运用mui框架,从而构建出高效且用户友好的移动应用界面。