data_read = pd.read_csv('data/ind.{}.x.csv'.format(dataset_str))
时间: 2024-05-21 16:17:10 浏览: 19
这行代码是使用 Pandas 库中的 read_csv 函数来读取一个 CSV 格式的数据文件。文件名是通过字符串格式化的方式动态生成的,其中 dataset_str 是一个变量,表示数据集的名称。这行代码将读取名为 "ind.{}.x.csv" 的文件,其中 {} 将被 dataset_str 取代。读取的数据将被存储在一个 Pandas DataFrame 对象中,并赋值给变量 data_read。
相关问题
import sys sys.path.append('../TOOLS') from CIKM_TOOLS import * data_folder = '../../data/' cnn = pd.read_csv(data_folder + 'result_cnn.csv') nn = pd.read_csv(data_folder + 'result_nn.csv') gbdt = pd.read_csv(data_folder + 'result_gbdt.csv') result_full = 0.8*cnn+ 0.1*gbdt + 0.1*nn nnpatch = pd.read_csv(data_folder + 'result_nnpatch.csv') gbdtpatch = pd.read_csv(data_folder + 'result_gbdtpatch.csv') result_patch = 0.8*nnpatch + 0.2*gbdtpatch result = pd.concat([result_full,result_patch]) result = result.sort_values(by = 'PIC_IND' , ascending = [1]) submit0 = pd.DataFrame({'PIC_IND':np.arange(1,2001)}) submit0 = pd.merge(submit0,result, how = 'left' , on = 'PIC_IND') submit0 = submit0.fillna(method = 'ffill') submit0 = submit0.sort_values(by = ['PIC_IND'],ascending = [1]) submit0['value'].to_csv(data_folder + 'submit.csv', header = False , index = False) #submit0['value'].to_csv('../submit_official/' + 'submit.csv', header = False , index = False) print(submit0.mean())
这段代码的作用是读取多个CSV文件(包括"cnn.csv"、 "nn.csv"、 "gbdt.csv"、 "nnpatch.csv"和"gbdtpatch.csv"),将它们的内容组合成一个新的数据框架"result_full"和"result_patch",并将它们合并成一个名为"result"的数据框架。然后,对"result"进行排序处理,并根据"result"的内容生成一个名为"submit0"的新的数据框架。最后,将"submit0"的"value"列导出为CSV文件,并打印出"submit0"的平均值。
f = open('G:\jiont\比赛数据2022\charging_data79.csv', encoding='utf-8') data = pd.DataFrame(pd.read_csv(f, encoding='utf-8-sig', low_memory=False)) soc = np.array(data['standard_soc']) # 放电深度DoD current = np.array(data['total_current']) current = [ float(x)/10 for x in current ] all_vol = np.array(data['cell_volt_list']) mileage = np.array(data['mileage']) mileage = [ float(x)/10 for x in mileage ] all_sig_data = cycle_sig(all_vol) all_sig_data = clean_data(all_sig_data) def split_chargedata(chargr_data): a_data = [] all_data = [] for index, m in enumerate(mileage): if index + 1 < len(mileage): if m == mileage[index + 1]: a_data.append(chargr_data[index]) else: a_data.append(chargr_data[index]) all_data.append(a_data) a_data = [] else: all_data.append(a_data) return all_data all_charge_data = split_chargedata(all_sig_data) all_charge_current = split_chargedata(current) all_charge_soc = split_chargedata(soc) dod1 = [] for t in all_charge_soc: dod1.append(t[-1]-t[0]) ind = [] for ind1, t in enumerate(dod1): if t<10: ind.append(ind1) all_charge_data = np.delete(all_charge_data, ind, axis=0) all_charge_current = np.delete(all_charge_current, ind, axis=0) all_charge_soc = np.delete(all_charge_soc, ind, axis=0) ind9 = [5, 13, 25, 35, 47, 55, 81, 84, 86, 88, 89, 92, 94, 101, 111, 115, 116, 126, 157, 162, 167, 174, 180, 198, 200, 216, 237, 245, 261] all_charge_data = np.delete(all_charge_data, ind9, axis=0) all_charge_current = np.delete(all_charge_current, ind9, axis=0) all_charge_soc = np.delete(all_charge_soc, ind9, axis=0)
这段代码主要进行了一些数据处理的操作,包括:
1. 读取CSV文件中的数据,将SOC、电流、电压等数据存储到NumPy数组中。
2. 对电压数据进行了一些处理,使用了`cycle_sig`和`clean_data`函数。
3. 定义了`split_chargedata`函数,用于将数据按照里程数进行拆分,生成二维列表,其中每个子列表代表一次充电过程中的数据。
4. 使用`split_chargedata`函数对SOC、电流和电压数据进行拆分。
5. 计算了每个充电过程的DoD,并将DoD小于10%的充电过程的索引记录在`ind`列表中。
6. 使用`np.delete`函数删除`ind`列表中的充电过程对应的SOC、电流和电压数据。
7. 还对一些其他的充电过程进行了删除操作,对应的索引记录在`ind9`列表中。
总体来说,这段代码的作用是对充电数据进行了一些清洗和处理,去除了一些异常数据和不需要的充电过程。
阅读全文