nsga2算法matlab代码
时间: 2023-08-01 08:06:32 浏览: 78
NSGA-2算法的MATLAB代码
以下是NSGA-II算法的MATLAB代码示例:
```matlab
% NSGA-II Algorithm
% f: Objective function array (each row represents an individual)
% nPop: Population size
% nVar: Number of decision variables (objective function parameters)
% nObj: Number of objective functions
% lb: Lower bound of decision variables
% ub: Upper bound of decision variables
% MaxIt: Maximum number of iterations
% pc: Crossover probability
% nc: Number of offsprings produced by crossover
% pm: Mutation probability
% nm: Number of offsprings produced by mutation
function [X, F] = nsga2(f, nPop, nVar, nObj, lb, ub, MaxIt, pc, nc, pm, nm)
% Parameters
p = 1; % Initial generation
mu = nPop; % Parent population size
lambda = nPop; % Offspring population size
pc = pc; % Crossover probability
nc = nc; % Number of offsprings produced by crossover
pm = pm; % Mutation probability
nm = nm; % Number of offsprings produced by mutation
% Initialization
X = lhsdesign(nPop, nVar, 'criterion', 'maximin', 'iterations', 100)';
X = repmat(lb, 1, nPop) + repmat((ub-lb), 1, nPop).*X;
F = evaluate(f, X);
[F, R] = non_dominated_sorting(F);
F1 = F{1};
Q = binary_tournament_selection(mu, R);
% Main Loop
while p <= MaxIt
% Generate Offsprings
Y = [];
for i = 1:nc
p1 = Q(randi([1, mu], 1));
p2 = Q(randi([1, mu], 1));
[y1, y2] = crossover(X(:, p1), X(:, p2), lb, ub, pc);
Y = [Y, y1, y2];
end
for i = 1:nm
p = Q(randi([1, mu], 1));
y = mutation(X(:, p), lb, ub, pm);
Y = [Y, y];
end
% Combine Parent and Offspring Populations
X = [X, Y];
F = evaluate(f, X);
% Non-dominated Sorting
[F, R] = non_dominated_sorting(F);
F1 = F{1};
% Truncation
if length(F1) >= nPop
X = X(:, R{1}(1:nPop));
F = F{1}(1:nPop, :);
break
end
% Parent Selection
Q = binary_tournament_selection(mu, R);
% Increase Generation Count
p = p + 1;
end
end
% Non-dominated Sorting
function [F, R] = non_dominated_sorting(F)
nObj = size(F, 2);
nPop = size(F, 1);
S = cell(nPop, 1);
n = zeros(nPop, 1);
F1 = [];
for i = 1:nPop
S{i} = [];
n(i) = 0;
for j = 1:nPop
if i ~= j
flag = 0;
for k = 1:nObj
if F(i, k) > F(j, k)
flag = 1;
break
end
end
if flag == 0
S{i} = [S{i}, j];
elseif flag == 1
n(i) = n(i) + 1;
end
end
end
if n(i) == 0
F1 = [F1; F(i, :)];
end
end
F = {};
R = {};
F{1} = F1;
i = 1;
while ~isempty(F{i})
Q = [];
for j = 1:size(F{i}, 1)
p = find(all(bsxfun(@eq, F{i}(j, :), F), 2));
for k = 1:length(S{p})
n(S{p}(k)) = n(S{p}(k)) - 1;
if n(S{p}(k)) == 0
Q = [Q, S{p}(k)];
end
end
end
i = i + 1;
F{i} = F(Q, :);
R{i} = Q;
end
end
% Binary Tournament Selection
function Q = binary_tournament_selection(mu, R)
nPop = length(R{1});
Q = zeros(1, mu);
for i = 1:mu
p1 = randi([1, nPop], 1);
p2 = randi([1, nPop], 1);
if length(R{p1}) < length(R{p2})
Q(i) = R{p1}(randi([1, length(R{p1})], 1));
elseif length(R{p1}) > length(R{p2})
Q(i) = R{p2}(randi([1, length(R{p2})], 1));
else
if rand < 0.5
Q(i) = R{p1}(randi([1, length(R{p1})], 1));
else
Q(i) = R{p2}(randi([1, length(R{p2})], 1));
end
end
end
end
% Evaluate Objective Functions
function F = evaluate(f, X)
nPop = size(X, 2);
nObj = size(f(X(:, 1)), 2);
F = zeros(nPop, nObj);
for i = 1:nPop
F(i, :) = f(X(:, i))';
end
end
% Crossover
function [y1, y2] = crossover(x1, x2, lb, ub, pc)
nVar = length(x1);
y1 = x1;
y2 = x2;
if rand < pc
j = randi([1, nVar-1], 1);
for i = j:nVar
y1(i) = x2(i);
y2(i) = x1(i);
end
end
y1 = bound(y1, lb, ub);
y2 = bound(y2, lb, ub);
end
% Mutation
function y = mutation(x, lb, ub, pm)
nVar = length(x);
y = x;
for i = 1:nVar
if rand < pm
y(i) = lb(i) + (ub(i)-lb(i))*rand(1);
end
end
y = bound(y, lb, ub);
end
% Bound
function y = bound(x, lb, ub)
y = max(x, lb');
y = min(y, ub');
end
```
这是一个基本的NSGA-II算法实现,你可以根据自己的需求进行修改和扩展。
阅读全文