遗传算法 pytorch
时间: 2023-09-06 09:13:36 浏览: 207
遗传算法是一种优化算法,它通过模拟生物进化的过程来寻找问题的最优解。在遗传算法中,解决方案被表示为一组基因,每个基因都对应于问题的一个变量。遗传算法使用基因交叉和变异等操作来生成新的解决方案,同时通过适应度函数来评估每个解决方案的质量。
在PyTorch中,可以使用遗传算法优化模型的权重和超参数。首先,通过定义适应度函数来评估模型性能。然后,将模型的权重和超参数表示为基因,并定义基因的交叉和变异操作。最后,使用遗传算法来搜索最优的模型权重和超参数。
以下是使用PyTorch实现遗传算法的示例代码:
```python
import random
import torch
from torch import nn
from torch.utils.data import DataLoader
# 定义模型
class Model(nn.Module):
def __init__(self, input_size, output_size, hidden_size):
super(Model, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
# 定义适应度函数
def fitness_function(model, data_loader):
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for inputs, targets in data_loader:
outputs = model(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return 1 / loss.item()
# 定义基因编码和解码函数
def encode(model):
genes = []
for param in model.parameters():
genes.append(param.view(-1))
return torch.cat(genes)
def decode(genes, model):
index = 0
for param in model.parameters():
param_num = param.numel()
param.data = genes[index:index+param_num].view(param.size())
index += param_num
# 定义遗传算法操作
def crossover(parent1, parent2):
crossover_point = random.randint(0, len(parent1)-1)
child1 = torch.cat([parent1[:crossover_point], parent2[crossover_point:]])
child2 = torch.cat([parent2[:crossover_point], parent1[crossover_point:]])
return child1, child2
def mutation(genes, mutation_rate):
for i in range(len(genes)):
if random.random() < mutation_rate:
genes[i] += torch.randn(genes[i].size())
return genes
# 设置参数
input_size = 784
hidden_size = 128
output_size = 10
population_size = 50
mutation_rate = 0.1
num_generations = 100
# 准备数据
train_data = DataLoader(...)
test_data = DataLoader(...)
# 初始化种群
population = []
for i in range(population_size):
model = Model(input_size, output_size, hidden_size)
genes = encode(model)
population.append(genes)
# 进化
for generation in range(num_generations):
# 计算适应度
fitness_scores = []
for genes in population:
model = Model(input_size, output_size, hidden_size)
decode(genes, model)
fitness_score = fitness_function(model, train_data)
fitness_scores.append(fitness_score)
# 选择父代
parent1_idx = fitness_scores.index(max(fitness_scores))
parent2_idx = random.choice([i for i in range(population_size) if i != parent1_idx])
parent1 = population[parent1_idx]
parent2 = population[parent2_idx]
# 交叉和变异
child1, child2 = crossover(parent1, parent2)
child1 = mutation(child1, mutation_rate)
child2 = mutation(child2, mutation_rate)
# 替换最差的个体
min_fitness_idx = fitness_scores.index(min(fitness_scores))
population[min_fitness_idx] = child1
# 替换次差的个体
fitness_scores[min_fitness_idx] = 1 / fitness_function(decode(child2, Model(input_size, output_size, hidden_size)), train_data)
second_min_fitness_idx = fitness_scores.index(min(fitness_scores))
population[second_min_fitness_idx] = child2
# 选择最优解
best_model = Model(input_size, output_size, hidden_size)
decode(population[fitness_scores.index(max(fitness_scores))], best_model)
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in test_data:
outputs = best_model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
print('Accuracy: {:.2f}%'.format(100 * correct / total))
```
在上面的示例代码中,我们使用遗传算法来搜索最优的神经网络权重和超参数,以分类MNIST数据集中的手写数字。在每一代中,我们计算种群中每个个体的适应度,并使用基因交叉和变异操作生成新的个体。然后,我们将新的个体替换种群中最差的个体和次差的个体。最后,我们选择具有最高适应度的个体作为最优解,并使用它来分类测试数据集。
阅读全文
相关推荐


















