16qam调制解调、误码率曲线、星座图、眼图matlab代码,并注释

时间: 2023-07-10 11:33:53 浏览: 94
以下是16QAM调制解调、误码率曲线、星座图、眼图的Matlab代码以及注释: %% 16QAM调制解调 % 假设我们要传输的数字信号为:[1 0 1 1 0 1 0 0] data = [1 0 1 1 0 1 0 0]; % 将数字信号转换为符号(即将2进制转换为16QAM星座图中的点) M = 16; % 星座图的大小 symbols = bi2de(reshape(data, [], log2(M)).','left-msb'); % 将二进制转换为十进制作为符号 % 显示16QAM星座图 scatterplot(qammod(0:M-1, M)); % 对符号进行16QAM调制 Fs = 1000; % 采样率 fc = 100; % 载波频率 t = 0:1/Fs:(length(symbols)-1)/Fs; % 时间轴 modulated = qammod(symbols, M); % 16QAM调制 transmitted = real(modulated .* exp(1j*2*pi*fc*t)); % 按照载波频率进行移频 % 在时域和频域中显示调制后的信号 figure; subplot(2,1,1); plot(t, transmitted); title('Modulated signal in time domain'); xlabel('Time (s)'); ylabel('Amplitude'); subplot(2,1,2); f = -Fs/2:Fs/length(transmitted):Fs/2-Fs/length(transmitted); plot(f, fftshift(abs(fft(transmitted)))); title('Modulated signal in frequency domain'); xlabel('Frequency (Hz)'); ylabel('Magnitude'); % 对调制后的信号进行16QAM解调 received = transmitted .* exp(-1j*2*pi*fc*t); % 进行移频还原 demodulated = qamdemod(received, M); % 16QAM解调 % 将解调后的符号转换为二进制 binary = reshape(de2bi(demodulated, log2(M)).', [], 1).'; disp(['Original data:', num2str(data)]); disp(['Demodulated data:', num2str(binary)]); %% 16QAM误码率曲线 % 生成随机的数字信号 data = randi([0 1], 1, 1000); % 将数字信号转换为符号 M = 16; % 星座图的大小 symbols = bi2de(reshape(data, [], log2(M)).','left-msb'); % 将二进制转换为十进制作为符号 % 对符号进行16QAM调制 Fs = 1000; % 采样率 fc = 100; % 载波频率 t = 0:1/Fs:(length(symbols)-1)/Fs; % 时间轴 modulated = qammod(symbols, M); % 16QAM调制 transmitted = real(modulated .* exp(1j*2*pi*fc*t)); % 按照载波频率进行移频 % 添加高斯白噪声 EbNo = 0:2:20; % 信噪比范围 ber = zeros(size(EbNo)); % 误码率 for i = 1:length(EbNo) snr = EbNo(i) + 10*log10(log2(M)); % 转换为信噪比 noisy = awgn(transmitted, snr, 'measured'); % 添加高斯白噪声 received = noisy .* exp(-1j*2*pi*fc*t); % 进行移频还原 demodulated = qamdemod(received, M); % 16QAM解调 binary = reshape(de2bi(demodulated, log2(M)).', [], 1).'; % 将解调后的符号转换为二进制 [~, ber(i)] = biterr(binary, data); % 计算误码率 end % 绘制误码率曲线 figure; semilogy(EbNo, ber); title('16QAM Bit Error Rate'); xlabel('Eb/No (dB)'); ylabel('Bit Error Rate'); %% 16QAM星座图 % 显示16QAM星座图 scatterplot(qammod(0:15, 16)); %% 16QAM眼图 % 生成随机的数字信号 data = randi([0 1], 1, 1000); % 将数字信号转换为符号 M = 16; % 星座图的大小 symbols = bi2de(reshape(data, [], log2(M)).','left-msb'); % 将二进制转换为十进制作为符号 % 对符号进行16QAM调制 Fs = 1000; % 采样率 fc = 100; % 载波频率 t = 0:1/Fs:(length(symbols)-1)/Fs; % 时间轴 modulated = qammod(symbols, M); % 16QAM调制 transmitted = real(modulated .* exp(1j*2*pi*fc*t)); % 按照载波频率进行移频 % 绘制眼图 eyediagram(transmitted, Fs/16); % 每个符号的采样点数为16

相关推荐

最新推荐

recommend-type

QPSK、8PSK、16PSK以及16QAM调制下的信道容量曲线

参考文献《Channel Codes: Classical and Modern》推导不同调制方式下的信道容量曲线。现在有一个二维M元信号集合,及信号的二维矢量表示。每一个信号波形都可以由完备的两个归一化正交函数的线性组合表示。现每...
recommend-type

通信与网络中的基于FPGA的16QAM调制器设计与实现

0 引言 为了满足现代通信系统对传输速率和带宽提出的新...1 16QAM调制原理 一般情况下,正交振幅调制的表达式为: 在式(1)的两个相互正交的载波分量中,每个载波被一组离散的振幅{Am}、{Bm}所调制,故称这
recommend-type

16QAM在瑞利信道下的误码率

16QAM在瑞利信道下的误码率
recommend-type

qam及常见调制信号的星座图

qam的星座图,详细描绘qam以及其他调制解调的矢量星座图 方便人们一眼看出,各种调制的不同之处
recommend-type

无线通信中的IQ调制,BPSK调制,QPSK调制,16QAM调制的理解.pdf

本文介绍了BPSK QPSK QAM 的仿真,以及基于IQ两路调制解调算法的实现。有助于初学者学习与理解调制解调算法。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。