仿真16qam通信系统,绘制眼图、星座图和误码率曲线。

时间: 2023-06-07 20:01:57 浏览: 199
仿真16QAM通信系统是指模拟一种用于数字通信的16进制正交振幅调制技术,通常用于在有限的电磁频谱上实现高速数据传输。在这种系统中,神经元接受数字信号并将其传输到电路中进行解调。通过对电路的仿真,我们可以绘制出三个图形,包括眼图、星座图和误码率曲线。 眼图是由仿真软件自动生成的,它代表了数字信号的传输路径。眼图的图像是指把一系列相关的信号采样时得到的波形叠加起来展开成平面图。眼图显示了接收端采集数据时的每一位的时间序列,在时域和幅度域上都具有独特的特征。从眼图中我们可以看出信息的码元序列是否均匀散布,以及数据是否完整和正确地传输。 星座图是由接收端及仿真软件自动生成的,它表征了接收到的信号的幅度和相位,并显示了传输过程中最终的调制效果。就是将原始的数据通过调制器的调制后,将调制后的数据映射到一个二维的平面上。星座图显示了接收端信号点在16维空间内的分布,以及信噪比是否适当。 误码率曲线是代表16QAM通信系统性能的重要参数之一。误码率曲线显示了系统在不同信号强度下发生误码的概率,可用于分析系统的信道质量和比较不同的系统结构。其中,当信号强度高时,误码率曲线稳定在低水平,而在低信号强度时,误码率曲线急剧上升,表明数据传输错误的概率大增。 通过观察这三个图像,我们可以对一种通信系统的性能和质量进行更深入的了解,并能够对其进行优化和改进。
相关问题

16qam 调制解调 并画出16qam星座图,误码率曲线,眼图 matlab代码仿真

16QAM调制解调的MATLAB代码如下: 调制: ```matlab % 设置参数 M = 16; % 星座点数 fc = 5000; % 载波频率 fs = 100000; % 采样频率 T = 1/fs; % 采样时间间隔 numBits = 1000; % 待调制的比特数 nSamp = 4; % 每个符号的采样数 EbNo = 10; % 信噪比(dB) EsNo = 10*log10(M) + EbNo; % 符号噪声比(dB) sigma = 1/sqrt(2*EsNo); % 噪声标准差 % 生成随机比特流 bitsIn = randi([0 1],1,numBits); % 将比特流分组成符号 M = 16; k = log2(M); symbolsIn = bi2de(reshape(bitsIn,length(bitsIn)/k,k),'left-msb'); % 生成16QAM星座图 constellation = qammod(0:M-1,M); % 16QAM调制 txSig = qammod(symbolsIn,M,'gray'); % 将符号映射到星座图上 txSigMapped = constellation(txSig+1); % 为星座图添加噪声 noise = sigma*randn(size(txSigMapped)); rxSig = txSigMapped + noise; % 绘制星座图 scatterplot(constellation); hold on; plot(real(txSigMapped),imag(txSigMapped),'ko'); plot(real(rxSig),imag(rxSig),'r.'); title('16QAM Constellation'); xlabel('In-Phase'); ylabel('Quadrature'); grid on; ``` 解调: ```matlab % 16QAM解调 rxSigMapped = rxSig ./ constellation; % 将解调后的符号映射到星座图上 [~,rxSymbols] = min(abs(rxSigMapped.' - constellation),[],2); rxBits = de2bi(rxSymbols-1,k,'left-msb').'; rxBits = rxBits(:).'; % 统计误码率 numErrs = sum(rxBits ~= bitsIn); ber = numErrs / length(bitsIn); % 绘制误码率曲线 EbN0 = 0:2:20; theoryBer = berawgn(EbN0,'qam',M); semilogy(EbN0,theoryBer,'b-','LineWidth',2); hold on; semilogy(EbNo,ber,'ro','LineWidth',2); title('16QAM BER'); xlabel('Eb/No (dB)'); ylabel('Bit Error Rate'); legend('Theory','Simulation'); grid on; % 绘制眼图 eyediagram(rxSigMapped,nSamp*2); title('16QAM Eye Diagram'); xlabel('Time'); ylabel('Amplitude'); grid on; ``` 注意,在以上代码中,`qammod`和`qamdemod`函数可以分别用于16QAM调制和解调。眼图可以使用`eyediagram`函数来绘制。

MATLAB实现超声波衰减信号的16QAM调制系统,画出星座图和误码率曲线

超声波衰减信号的16QAM调制系统可以分为三个部分:信号生成、调制和传输。其中信号生成和调制部分可以在MATLAB中完成,传输过程需要外部硬件支持。 以下是MATLAB代码示例: ```matlab % 参数设置 fs = 1e6; % 采样率 fc = 2e6; % 载波频率 T = 1/fs; % 采样间隔 L = 1024; % 信号长度 t = (0:L-1)*T; % 时间序列 f0 = 500e3; % 信号中心频率 B = 100e3; % 信号带宽 K = B/f0; % 调频斜率 phi = 2*pi*f0*t + pi*K*t.^2; % 相位 s = 10*sin(phi); % 信号 % 16QAM调制 M = 16; % 星座点数 k = log2(M); % 每个符号的比特数 x = randi([0 1], L/k, k); % 随机生成比特流 data = bi2de(x); % 将比特流转换成十进制数 symbols = qammod(data, M); % QAM调制 % 显示星座图 scatterplot(symbols); % 计算误码率曲线 EbNo = 0:1:20; % 信噪比范围 ber = zeros(size(EbNo)); % 误码率 for i = 1:length(EbNo) snr = EbNo(i) + 10*log10(k) - 10*log10(2); % 信噪比 noise = sqrt(0.5/(10^(snr/10)))*randn(size(symbols)); % 加性高斯白噪声 received = symbols + noise; % 接收信号 rxData = qamdemod(received, M); % QAM解调 ber(i) = biterr(data, rxData)/length(data); % 计算误码率 end % 显示误码率曲线 semilogy(EbNo, ber); xlabel('Eb/No (dB)'); ylabel('Bit Error Rate'); title('16QAM Bit Error Rate'); grid on; ``` 以上代码中,首先生成了一个带有调制斜率的正弦信号。然后随机生成了比特流,并通过QAM调制将其转换为16个星座点中的一个。接着绘制了星座图并计算了误码率曲线。 需要注意的是,由于超声波衰减信号的特殊性质,传输过程需要使用专门的硬件进行模拟,无法在MATLAB中进行。因此上述代码仅用于信号生成和调制部分的演示。

相关推荐

最新推荐

recommend-type

QPSK、8PSK、16PSK以及16QAM调制下的信道容量曲线

参考文献《Channel Codes: Classical and Modern》推导不同调制方式下的信道容量曲线。现在有一个二维M元信号集合,及信号的二维矢量表示。每一个信号波形都可以由完备的两个归一化正交函数的线性组合表示。现每...
recommend-type

16QAM在瑞利信道下的误码率

16QAM在瑞利信道下的误码率
recommend-type

解析方法和蒙特卡罗仿真方法分别研究QAM的误码性能

将解析法与蒙特拉卡罗仿真进行对比,分析数学理想模型建立的合理性,首先由MATLAB程序产生信号源,再模拟AWGN平坦衰落信道中叠加加性高斯白噪声,在接收端对接收信号进行检测与估值,并对信号进行判决恢复原始信号。
recommend-type

通信与网络中的基于FPGA的16QAM调制器设计与实现

为了满足现代通信系统对传输速率和带宽提出的新要求。人们不断地推出一些新的数字调制解调技术。正交幅度调制解调(quadrature ampli-tude modulation and demodulation)就是一种高效的数字调制解调方式。与其它调制...
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

爬虫与大数据分析:挖掘数据价值,洞察趋势

![python网站爬虫技术实战](https://img-blog.csdnimg.cn/20181107141901441.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hpaGVsbA==,size_16,color_FFFFFF,t_70) # 1. 爬虫基础与技术** 爬虫,又称网络蜘蛛,是一种自动化的程序,用于从互联网上抓取数据。其工作原理是模拟浏览器行为,通过发送请求并解析响应来获取网页内容。 爬虫技术涉及多种技术,
recommend-type

解释一下下面每句话的含义@RequestMapping(value = "gcGl") public String gcGl(Gcgl gcGl, Model model) { List<Gcgl> list = gcglService.findList(gcGl); if (list!=null&&list.size()>0) { model.addAttribute("gcGl", list.get(0)); }else { model.addAttribute("gcGl", gcGl); } return "modules/tjxx/gc08glForm"; }

这段代码是一个Java方法,用于处理HTTP请求,具体含义如下: - @RequestMapping(value = "gcGl"):这是一个注解,表示该方法会处理名为"gcGl"的请求,即当用户访问该请求时,会调用该方法。 - public String gcGl(Gcgl gcGl, Model model):这是方法的声明,它有两个参数:一个是Gcgl类型的gcGl,另一个是Model类型的model。方法的返回值是一个字符串类型。 - List<Gcgl> list = gcglService.findList(gcGl):这行代码调用了一个名为findList的方法,该方法接受一个
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依